\qquad

PHYSICS

Date

2HOURS

BUNYORE - MARANDA (BUMA 1)

Kenya certificate of secondary Education

PHYSICS

Paper 1
2hours

Write your name and index numbers in the spaces provided above.
This paper consists of TWO sections: A and B
Answer All the questions in section A and B in the spaces proviged d
ALL working MUST be clearly shown
Mathematical tables and electronic calculators may be used.

Section	question	dáximum score	Candidate's score
A	1-14	25	
B	1516 P	13	
	16^{2}	12	
	Q19	12	
		18	
	otal Score	80	

This paper consists of 11 pages
Candidates shouldrcheck the question paper to ensure that all pages are printed as indicated and no questions are missing.

SECTION A: 25 MARKS

1. A stone of mass 40 g was completely immersed in a liquid. The level of liquid are shown in the figure

Determine the density of the stone in SI units
2. The following figure shows a rod made of wood on one end ametret on the other end suspended freely with a piece of thread so that it is in equfibrium.

The side made of metal is now heated with a Bunsen flame. State with a reason, the side to which the rod is likely to tilt
(2mks)
\qquad
3. Estimate the size of ahtil molecule if a drop of oil of volume $6.0 \times 10^{-10} \mathrm{~m}^{3}$ forms a patch of 32 on a water sulface.
4. Qther than oil patch being monolayer, sate any one other assumption in the oil drop experiment.
\qquad switched on for 7.5 minutes the temperature of the liquid rises by 400C. Determine the specific heat capacity of the liquid.
6. Other than temperature state one other factor that affects the surface tension of wated
7. The figure below shows a uniform bar pivoted at its centre and is at equilibrịn.

Determine the value of w.

8. When a Bunsen burner is lit below wire gerze, it is noted the flame initially burns below he gauze as shown in
(i) After sometime, the flame burns below as well as above the gauze as shown in

(ii) Explain this \&bservation
9. Theffigure shows the velocity time graph of two identical spheres released from the surfaces of $<$ diol liquids A and B.

Time (s)
10. A box of mass 500 g is dragged along a level ground at a speed of $12 \mathrm{~m} / \mathrm{s}$. if the force of friction between the box and the floor is 2000 N , calculate the power developed.
(2mks)
11. State how heat losses by convection and radiation are minimized in a thermos f1 §k. (2mks)

12. On the axes provided sketch a graph of velocity (v) verses time (t) for uniformly accelerated motion given that $\mathrm{t}=0, \mathrm{v}$ is greater than zero.

13. Sketch on he axes provided a graph to show how mass per unit volume of water varies with temperature when water is heated from 0° to 20°

14. State how the velocity of a moving fluid varies with pressure.

SECTION B (55 MARKS)

15. (a) When a fountain pen is taken in a high aero plane, it leaks. A ball point pen does not have this problem. Explain how the ball point is able to overcome this problem.
(b) The fig below shows a hydraulic press used to compress a bale

(i) Explain briefly ho a force applied on the lever cginpresses the bale.
(4mks)

(ii) Given that the area of piston B applied to piston A, find the force produced on the larger piston B that compresses the bale.
(c) A 180W heater is immersed in a copper calorimeter of mass 100 g containing 200 g of alcohol. When hefreater is switched on after 36 seconds the temperature of calorimeter and its contents risest 12°. If S.H.C of water and copper is $4200 \mathrm{~J} / \mathrm{kgk}$ and $400 \mathrm{j} / \mathrm{Kgk}$ respectively. Determine:
(V) Heat lost by the heater
(2mks)

(ii) Heat gained by calorimeter and alcohol, if the specific heat capacity of alcohol C_{u}. (2mks)
(iii) The value of specific heat capacity of alcohol
(b) The set up shows an arrangement to determine the relationship between temperature and pressure of a gas constant volume.

(i) Describe how pressure measurements are obtained in the experiment.
(3mks)

(ii) Explain how the result form the experiment can be used to determine the relationship between temperature and pressere.

(c) A bicycle tire is pumbed to a pressure of $2.2 \times 10^{5} \mathrm{pa}$ at $23^{\circ} \mathrm{C}$. After a race the pressure is found to be 2.6×10^{0} pa.Assuming the volume of the tire did not change, what is the temperature of the air in the tire.
(d) Air is trapped inside a glass tube by a thread of mercury 240 mm long. When the tube is held horizontally the length of the air column is 240 mm .

Assuming that the atmospheric pressure is 750 mm Hg and the temperature is constant; calculate the length of the air column when the tube is vertical with open end down. (3mks)
17. (a) Define the term work
(b) The figure shows a force-distance graph for a car towed on a horizohtal ground

(i) Calculate the total work done Q^{\bullet}
(3mks)
(ii) If the velocityjust before reaching point C is $0.6 \mathrm{~m} / \mathrm{s}$, calculate the power developed by the agent proviling the force at this point.

(c) The figure below shows a bottle top opener

(d) A block and tackle system has 3 pulleys in the upper fixed block and two in the lower movable block. What load can be lifted by the effort of 200N if the efficiency of the system is 60%
18. (a) State two factors that reduce the stability of a vehicle while going round a banked bend.

(b) The figure shows a bucket filled with water of mass 5 kg tied on a sfying 2.0 m long being rotated in a vertical circle with a constant speed $\mathrm{V} \mathrm{m} / \mathrm{s}$.

Calculate the minimum speed the bugket takes to rotate in position A so that the water remains in the bucket.
(c) A car of mass 6000 kg is driven round a horizontal curve of radius 250 m . if the force of friction between the tyres and the road is 21000 N , what is the maximum speed that the car can be driven at on the curve without going off the road.
(d) In an experiment to investigate the variation of centripetal force with radius r of a circle in which a body rotates, the following results were obtained.

(iii) Given that mass of the body is 100 g , use the graph to determine the angular velocity.

