Name $\qquad$ School $\qquad$ Adm No $\qquad$
$\qquad$
232/2
Date $\qquad$
PHYSICS
PAPER 2
Theory
2013
2 hours

MARANDA, BUNYORE ENROLMENT EXAMINATIONS
Kenya Certificate of Secondary Education (K.C.S.E)
PHYSICS
Paper 2 (Theory)
2 Hours

Instructions to candidates
a. Write your name and Adm No in the spare provided above.
b. Sign and write date of examination, inithe space provided above.
c. This paper consists of two sections, $A$ and $B$.
d. Answer all the questions in section $A$ and $B$ in the space provided.
e. All working must be clearly sfiown.
f. No-programmable silent electronic calculators and KNEC mathematical tables may be used.

FonExaminer's Use Only

| SECTION | QUESTION | MAX.SCORE | CAND.SCORE |
| :---: | :---: | :---: | :---: |
| A | 110 | 25 |  |
| B | 11 | 09 |  |
| $e^{e}$ | 12 | 10 |  |
| < | 13 | 12 |  |
| e | 14 | 11 |  |
| ${ }^{0}$ | 15 | 13 |  |
| $\Gamma$ | Total score | 80 |  |

This paper consists of 10 printed pages.
Candidates should check question paper to ensure that all that all pages are printed as indicated and no questions are missing.

## SECTION 1 (25MARKS)

Answer all the questions in the section in the space provided.

1. (a) What property of light are applied in the information of images by pinhole camera.
(b) Explain why inside of pinhole camera is painted black?
$\qquad$
2. The diagram below shows the object in front of a plane mirror's accurate ray diagrams locate the position of the image.

3. (a) State the advantages of double stroke method over single stroke method of magnetization.
(b) Using a double stroke method a student produced a magnet with consequent poles as shown. Draw the magnetic pattern of magnet.

N
N
4. The electromotive force of a simple cell reduces even when the cell is not in use.

Explain

In the space bela 4 draw a circuit diagram of a three cell torch.

6. The diagram below show four wires carrying electric current. Determine the reading of the voltmeter across 4 ohm resistor.

7. Two capacitors C 1 and C 2 are in series. The total charge of the capacitors is $1.8 * 10-4$ coulombs and t6he p.d across two capacitors is 150 v . If the value of C 1 is 2 uf determine the value of C 2 .
(3mks)
8. The figure below shows a progressive wave incident on a boundary between deeg pand shallow region.

(a) Complete the diagram to show what is observed after the boundary. (Assume no loss of energy).
(b) Explain the observation in (a) above

9. The diagram below shows an object o at he bottom of beaker filled with two immiscible liquids A and B.The obsefver above the beaker sees its image at point X inside liquid B.


If the refractive index of A is 0.8 , determine the refractive index of B .

18. The figure below shows a coil carrying a current in a magnetic field.


On the sarie diagram draw the magnetic field lines across the coil.

## SECTION B (55 MARKS)

11. (a) Define the term wavelength.
(b) Loudspeaker placed between two wall A and B is sending out constant wave pulses. Determine how far the loudspeaker is from wall B if it is 100 m from wall A, and the time between the two echoes received is 0.2 seconds (speed of sound is $340 \mathrm{~m} / \mathrm{s}$ )
(c) On the space provided sketch the displacement time graph of avave of amplitude 1 cm and a frequency of 4 Hz , over an interval 1 second.


(d) Distinguish between standing waves anact progressive waves.
$\qquad$
$\qquad$
12. The figure below may be usea to study the action of a capacitor during charging and discharging


Sketch the graph of current I against time ( $t$ ) from $t=o$ to $t=t 1$ for charging and $\mathrm{t}=\mathrm{t}_{1}$ to $\mathrm{t}=\mathrm{t}_{2}$ for discharging.
(b) In the figured below find the total capacitance and the charge across each capacitor.

(i) Total capacitance $\mathrm{C}_{\mathrm{T}}$
(ii) The charges $\mathrm{Q}_{1}$
$\mathrm{Q}_{1}$

(iii) $\mathrm{Q}_{2}$

(iv) $\mathrm{Q}_{3}$

(2mks)
(2mks)
(1mk)
13. (a) Define focalength of a converging lens.

(b) The ear point N of a defective eye is 30.0 cm from the eye. Find the focal length and the power of lens needed to correct the defect.
(c) In a compound microscope the focal length of the objective lens is 3.0 cm and that of the eye piece is 3.2 cm and they are placed 10.0 cm apart. An object of size 2.00 mm is placed from the objectives lens.
(d) Use the lens formula in turn for each lens to find the position of the final image.
(e) Calculate the magnification produced by the arrangement of the lenses and the size of the final image viewed.
14. (a) Define the term refraction

(b) The figured below shows an optical fibre with a ray enteding the end of the fibre.


By use of array diagram show how the raypasses out.
(c) State one use of fibre communication and one use in medical purposes. (1mk)
(i) Communication

(d) A glass prism max be used to divert a ray of light in a simple periscope. An erect object is placed front of the periscope.
(i) State the characteristics of the image formed of an object incident on the perßcope.
(2mks)

(e) The figure below represents a ray incident into air glass interface. Among the paths OA, OB, OC, OD and OE. Which one shows the path followed by the ray?
Explain.


15. The figure below shows a connection done by a student duringeqpactical session, to measure the resistance R of component $\mathrm{Z}, \mathrm{V}$ and A are volttideter and ammeter respectively.

(a) Explain why the connection iscorong.

(b) State one advantagesphe disadvantage of the leclanche cell
(i) Advantages
(ii) Disadkantages

(c) A car batery is an example of a lead acid accumulator. State the materials used at the terminals.

(d) In the figure below 1.5 v cells of negligible resistance are connected to a combination of resistors as shown below.

Calculate

(i)The total resistance in the circuit.
(ii) The current flowing in the $4 \Omega$ resistor


(iii) Current flowing in the $6 \Omega$ resistats
( 2mks)
(iv) The charge flow through the cells in a time 20 seconds.
( 2mks)


