INDEX NO $\qquad$
SCHOOL $\qquad$ e... .DATE: $\qquad$
121/2
MATHEMATICS
PAPER 1
TIME: $21 / 2$ HOURS

## BUNYORE-MARANDA JOINT EXAMINATIONS 2014

## MATHEMATICS

TERM III
Kenya Certificate of Secondary Education

## INSTRUCTIONS TO CANDIDATES

1. Write your name, index number, class and school in the spaces provided above.
2. This paper consists of TWO sections I \& II
3. Answer ALL the questions in section I and only FIVE questions from section II
4. All answers and working must be written on the question paper in the spaces provided below each question.
5. Show all the steps in your calculations giving your answers at each stage in the spaces below each question.
6. Marks may be given for correct working even if the answer is wrong.
7. Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.

## FOR EXAMINERS USE ONLY

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | TOTAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## SECTION II

| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | TOTAL | GRAND TOTAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |

## SECTION I (50 MARKS)

Answer ALL Questions in this section.

1. Find the percentaget error in estimating the volume of a cone whose radius is 3.4 cm and height is $8 \mathrm{~cm} . \alpha^{*}$
2. Make $n$ the subject of the formula $\left.P=a r^{2}-s\right)^{1 / n}$
(3 marks)
3. Solve the equation $2 \cos ^{2} \mathrm{x}-\sin \mathrm{x}=1$ for $-180^{\circ} \leq \mathrm{x} \leq 180^{\circ}$.
4. When $\mathrm{N}=1$ and $\mathrm{M}=5$ when ${ }^{2}=1 / 2$
(a) Find the equation cornecting $M$ and $N$.
(b) Calculate the value of M when $\mathrm{N}=2 / 3$
5. Solve for x in the equation $1 / 2 \log _{2} 81+\log ^{2}\left(\mathrm{x}^{2}-\mathrm{x} / 3\right)=1$
6. Use logarithms to evaluate $\left(\frac{34.65 \times 0.451}{4.675}\right)^{-1 / 3}$
7. Table below is part of tax table for annual income for the year 2010.

| Taxable income in K£ 4 p.a. | Rate in Kshs. Per K£ |
| :---: | :---: |
| Under K£4201 ** |  |
| From K£4201 $\downarrow$ but under K£8401 |  |
| From K£88401 but under K£1261 |  |

In the year 2010, the tax on Oyugi's annual income was Ksh.12,000. Calculate Oyugi's annual income in $\mathrm{K} £$.
8. (a) Expand $(1-2 x)^{6}$ upto the term in $x^{3}$.
(b) Use the expansion to evaluate $(1.02)^{6}$ to 4 decimal places.
9. Given that $\mathrm{OA}=2 \mathrm{i}+5 \mathrm{k}$ and $\Theta \overparen{\mathrm{B}}=7 \mathrm{i}-5 \mathrm{j}$. A point T is on B such that $2 \mathrm{AT}=3 \mathrm{~TB}$. Calculate the magnitude off $\mathrm{O}^{5} \mathrm{~T}$ to 4 significant figures.
10. Find the quartile deviation for the set of data below.
(2 marks)
$16,18,10,8,5,11,4$ and 7
11. In the figure below, line $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BE}=8 \mathrm{~cm}$ and $\mathrm{DE}=4 \mathrm{~cm}$. Find the value of y .
(2 marks)

12. Solve the following simultaieous inequalities and state all integral values for the solution.

(2 marks)
13. The curve $y=a x^{3}-3 x^{2}-2 x+1$ has the gradient 7 when $x=1$. Find the:
(i) Value of a
(ii) Equation of the tangent to the curve at $\mathrm{x}=-1$
(3 marks)
14. Without using a calculator, $\frac{\sqrt{23} 2}{\sqrt[6]{32}+\sqrt{72}}$, leaving the answer in the form

$$
a \sqrt{b}+c \text { where } a, b{ }^{2} n^{e^{e}} c \text { are integers. }
$$

(4 marks)
15. A mixture contains two powders P and Q with masses in the ration 3: 11. If the mixture costs sh. 670 per kg and powder P costs sh .560 per kg , find the cost of a kg of powder Q .
(3 marks)
16. Find the radius and the centre of a circle whose equation is

$$
\begin{equation*}
3 x^{2}+3 y^{2}+18 y=12 x-9=0 \tag{3marks}
\end{equation*}
$$

## SECTION 11 (50 Marks)

Answer any five questions fromahis Section.
17. In driving to work ${ }^{\text {Bum }}$. that he will have to stop at any of the lights is $3 / 4$
(a) Draw a tree diagram to represent the above information.
(b) Using the diagram, determine the probability that on any one journey, he will have to stop at:
(i) All the three sets.
(2 marks)
(ii) Only one of the sets
(2 marks)
(iii) Only two of the sets
(2 marks)
(iv) None of the sets.
(2 marks)
18. (a) Using a ruler and pairef compasses only, construct triangle ABC in which $\mathrm{AB}=$ $9 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{a}_{\mathrm{a}}$. $\mathrm{BAC}=60^{\circ}$.
(b) On the same side of AB as C , draw the locus of a point such that angle $\mathrm{APB}=60^{\circ}$ (3 marks)
(c) A region T is within the triangle ABC such that $\mathrm{AT}>4 \mathrm{~cm}$ and angle $\mathrm{ACT} \geq$ angle $B C T$. Show the region $T$ by shading it.
19. Three consecutive terms in a $3^{2 \times 1}, 9^{x}$ and 81 respectively.
(a) Calculate the value $00^{4}$
(3 marks)
(b) Find the common ratio of the series.
(2 marks)
(c) Calculate the sum of the first 10 terms of the series.
(2 marks)
(d) Given that the fifth and the seventh terms of this G.P form the first two consecutive terms of an arithmetic sequence, Calculate the sum of the first 20 terms of the arithmetic sequence.
(a) Sketch the curve of $y=x^{2}-4 e^{-e^{S^{2}}}$
(2 marks)
(b) Calculate the area bounded by the curve $y=x^{2}-4$, the $x-$ axis, the lines $x=1$ and $x=4$ by using the trapexoidal rule with 6 equal strips.
(3 marks)
(c) Calculate the exact area in (6) above using the method of integration.
(4 marks)
(d) Find the percentage error in the area in (b) above.
(1 mark)
21. A and B are two points on the fatitude $40^{\circ} \mathrm{N}$. The two points lie on the longitudes $20^{\circ} \mathrm{W}$ and $100^{\circ} \mathrm{E}$ respectively.
(a) Calculate:
(i) The distânce from A to B along a parallel of latitude. (3 marks) $-j y^{2 y^{x}}$


(ii) The shortest distance from A to B along a great circle.
(4 marks)
(b) Two planes P and Q left A for B at 400 knots and 600 knots respectively. If P flew along the great circle and B along parallel latitude, which one arrived earlier and by how long. Give your answer to the nearest minute (Take $\mathrm{R}=6370 \mathrm{~km}$ and $\pi=22 / 7$ ).
22. (a) Complete the table below $\left.f_{6}\right)^{2}$ the equation $y=x^{3}-2 x^{2}-4 x+7$. (2 marks)

| x | -3 | -2 | $1^{\text {c }}$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | -26 | -1 |  | 7 |  | -2 |  | 23 |

(b) Using the scale 1 cm to represent 1 unit on the $x$ - axis and 1 unit to represent 5 units on the $y$ - axis, draw the graph of $y=x^{3}-2 x^{2}-4 x+7$.

(c) Use your graph to estimate the roots of the equation

$$
\begin{equation*}
x^{3}-2 x^{2}-4 x+7=0 \tag{1mark}
\end{equation*}
$$

(d) By drawing appropriate straight lines, use your graph to solve the equations.
(i) $x^{3}-2 x^{2}-4 x+2=0$
(2 marks)
(ii) $x^{3}-2 x^{2}-3 x+3=0$
(2 marks)
23. The cash price of a laptop waskshs. 60,500 . On hire purchase terms, a deposit of Ksh.8,000 was paid followed by 11 monthly installments of Kshs. 6000 each.
(a) Calculate:
(i) Thestost of a laptop on hire purchase terms.
(2 marks)
(iii) The percentage increase of hire purchase price compared to the cash price. ( 2 marks)
(b) An institution was offered a 5\% discount when purchasing 25 such laptops on cash terms. Calculate the amount of money paid by the institution.
(2 marks)
(c) Two other institutions X and Y , bought 25 such laptops each. Institution Y bought the laptops on cash terms with no discount by securing a loan form a bank. The bank charged $12 \%$ p.a compound interest for two years. Calculate how much more money institution Y paid than institution X .
(4 marks)
24. A manager wishes to hire twodypes of machine. He considers the following facts.

| Machine type | Number of men operators | Floors space | Hourly profit |
| :--- | :--- | :--- | :--- |
| A | 年 | 2 | 4 |
| B | $2 s^{2}$ | 3 | 3 |

He has a maxinaty of $24 \mathrm{~m}^{2}$ of floor space and a maximum of 36 men available. In addition he is not allowed de hire more machines of type B than of type A.
(a) $\mathrm{cl}_{\mathrm{f}} \mathrm{c}^{\alpha}$ he hires x machines of type A and y machines of type B, write down all the inequalities that satisfy the above conditions. (3 marks)
(b) On the grid provided, draw the inequalities in part (a), above and shade the unwanted region.
(3 marks)


(c) Draw a search line and use it to ${ }^{\circ}$ determine the number of machines of each type that should the manager chooseft give the maximum profit. (4 marks)


- END -

