Name: \qquad
\qquad
School: \qquad Stram \qquad Adm No \qquad
232/1
PHYSICS
Paper 1
(Theory)
May/June 2014e
Time: 2 How

BUNYORE-MARANDA PRE-MORK EXAMS 2014

${ }^{\text {e }}$ © Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

\checkmark The paper consists of TWO sections A and B.
\checkmark Answer all the questions in section A and B in the spaces provided
\checkmark All working MUST be clearly shown
\checkmark Non-programmable silent calculators and KNEC mathematical tables may be used.
FOR EXAMINER'S USE ONLY

Section	Question	Maximum Score	Candidate's Score
A	$11-11$	25	
B	12	11	
	13	10	
	14	13	
TOTAL SCORE	16	11	

This paper consists of 13 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

SECTION A (25 Marks)

1. The figure below shows a micrometer screw gauge being used to measure the diameter of a rod. The thimble scale has 50 divisions.

State the reading shown above.
(2 marks)
2. The figure below shows water placed in a measuring cylinder calibrated in cm^{3}

An object of mass 50.1 g and density $16.7 \mathrm{~g} / \mathrm{cm}^{3}$ is lowered gently in the water. Indicate on the diagram the new level.
3. An object is attached to a spring balance and its weight determined in air. It is then gently lowered into a liquid in a beaker. State what will happen to the reading. (1 mark)
4. The figure below shows a unifiorm meter rule pivoted at the 23 cm mark with a mass of 3.6 kg hanging at 0 cm mark the system is in equilibrium.

7. A block of copper of mass 2 kg aifd specific heat capacity $400 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ initially at $81^{\circ} \mathrm{C}$ is immersed in water at $20^{\circ} \mathrm{C}$. 頻the final temperature is $21^{\circ} \mathrm{C}$, determine the mass of water.

8. Wbeen a body of mass 0.25 kg is acted on by a force, its velocity changes from $5 \mathrm{~m} / \mathrm{s}$ to $8.5 \mathrm{~m} / \mathrm{s}$, determine the work done by the force.
9. The following figure shows a rod made of wood on one end and metal on the other end suspended freely with a piece of thread so that it is in equilibrium.

The side made of metal is now heated with a Bunsen flame. State with a reason, the side to which the rod is likely to tilt.
10. The figure shows the velocity timine graph of two identical spheres released from the surfaces of two liquids A and ${ }^{\varsigma} \mathrm{B}$.

Give a reason why the terminal velocity of the sphere In B is higher than in A. (1 mark)
11. A u-tube vertically holds two liquids L_{1} and L_{2} as shown in the figure below.

(a) Mark accurately the point in liquid L_{2} that is at the same pressure as point P
(b) If the atmospheric pressure is $103000 \mathrm{~N} / \mathrm{m}^{2}$ and the density of liquid L_{2} is $103 \mathrm{~kg} / \mathrm{m}^{3}$ determine the pressure acting at point A .

Answer all questions in this section
12 (a) The velocity-time gataph in the figure below illustrates the motion of a ball which has been projected vertically upwards from the surface of the moon. The weight of the object on earth's surface is $2 \mathrm{QN}^{5}$, when the acceleration due to gravity is $10 \mathrm{~ms}^{-2}$.

(i) State why the velocity becomes negative after 3 seconds.
(ii) Determine the accelezation of free fall on the moon showing clearly your work

(iiii) ${ }^{0^{5}}$ Determine the total distance traveled by the ball in 1.0 sec (2 marks)
\qquad
\qquad
\qquad
(iv) Find the weight of the ball on the moon
(2 marks)
\qquad
\qquad
(v) If the ball was projected vertically upwards on the earth with the same velocity. What difference would you expect to observe in the velocity-time graph above? Illustrate with a sketch on the same axis.
\qquad
\qquad
\qquad
(b) The figure below represents part of a tape pulled through the ticker-timer of frequency 50 Hz moving down an inclined plane.

If the trolley was allowed to move dome inclined plane for 4 seconds. Calculate the distance it covers.

(2 marks) Q^{2}
(b) 200 g of a solid was uniformly heated by a 0.2 kw heater for sometime. The graph in the figure below shows how the temperature of the solid changed with time.

(i) Explain what is happeningBetween OA and AB .

(ii) Cadeulate the specific heat capacity of the solid.
(iii) Calculate the specific latent heat of fusion \mathbf{k} of the solid.
(3 marks)
\qquad
\qquad
\qquad
14 (a) (i) Define the term velocity ratio (V.R)
(1 mark)
\qquad
\qquad
(ii) Name one machine that has a velocity ratio of less than one (V.R < 1) (1 mark)
(b) The figure below shows a set-up used to find the mechanical advantage of a pulley system\}

On the axes provided sketch a graph $\mathrm{A}_{\text {mechanical advantage (M.A) against load (L) }}$

(c) A hydraulic machine is used to raise a load of 100 kg at a constant velocity through a light of 2.5 m . The radius of the effort piston is 1.4 cm while that of the load piston is 7.0 cm . given that the machine is 80% efficient, calculate:
(i) The effort needed (3 marks)
(ii) The energy wasted in using the machine
15. a) Define pressure and state its $\mathrm{S}_{2} \mathrm{P}^{2}$ Units.

b) State SF^{2} ascal's principal.
c) In construction of a mercury barometer care is taken to make sure it has no gas in the space above mercury.
i) How would you test whether there is gas above?
\qquad
\qquad
iii) State the problem caused by the presence of gas in the barometer. (1 mark)
\qquad
\qquad
\qquad
d) Find the total pressure experienced by a diver 8 meters below the sea surface. Take; Atmospheric pressure $=103360 \mathrm{~N} / \mathrm{m}^{2}$. Density of sea water $1030 \mathrm{~kg} / \mathrm{m}^{3}$ (3 marks)
e) i) The air pressure at the base of eace mountain is 75.0 cm of mercury while at the top it is 60.0 cm of mercury. Giventhat the average density of air is $1.25 \mathrm{kgm}^{-3}$ and the density of mercury is $13600 \mathrm{~km}^{-3}$ \& 8 alculate the height of the mountain.

Q, (ii) State factors that affects pressure due to liquid column.
\qquad
\qquad

16 a) The figure below shows a circuit diagram for a device for controlling the temperature in a room.

i) Explain the purpose of the bimetallic strip.
ii) Describe how the circuit centrols the temperature when the switch is closed.

b) (i) Explain why bodies in circuit motion undergo acceleration even when their speed is cornstant.
(1 mark) 2^{2}
(iii) A particle moving along a circular path of radius 5 cm describes an arc of length 2 cm every second. Determine:
I) Its angular velocity
(2 marks)
\qquad
\qquad
\qquad

II) Its periodic time.

(2 marks)
\qquad
\qquad
\qquad
(iv) A stone of mass 40 g is tied to the end of a string 50 cm long and whirled in a vertical circle at $2 \mathrm{rev} / \mathrm{s}$. Calculate the maximum tension in the string.
(3 marks)
\qquad
\qquad
\qquad

