PHYSICS PAPER 232/1 2008 MARKING SCHEME

- 1. 5×10^{-6} kg (if working shown it must be correct)
- 2. For water

$$V = \frac{M_w}{1}$$

or W DML

$$RD = \frac{M_L}{M_L} = P$$

For liquid

$$V = \frac{M_L}{P_L}$$

 $P = \frac{M_L}{M_W}$

$$P = \frac{M_L}{M_W}$$

3. a). Con actinit. F.

F₁ - Reaction F₂ - Friction

- R reaction force Hr to surface
- F Friction force Parallel to surface

b). R – increases

f - reduces

Or R – approaches W F – Reduces

- Atmospheric pressure is higher than normal/standard or boiling was below Pressure of impunities
- 5. When flask is cooled it contracts /its volume reduces but due to poor conductivity of the glass/ materials of the flask water falls as its contraction is greater than that of glass (3 marks independent unless there is contradiction)
- 6. Heat conductivity / rates of conduction/ thermal conductivity (NB: if heat conduction no mark)
- 7. X sectional area/ diameter/ thickness / radius

8.
$$P_1 = pgh$$

= $1200 \times 10 \times 15 \times 10^{-2}$
= $1800pa$
= 8.58×10^4pa
(85800pa)

or
$$Pr = PA + heg$$

= $8 \times 10^{-4} + 15 \times 1200 \times 10^{-2} \times 10$
= $8.58 \times 10^{4} pa$

Intermolecular distances are longer/bigger/larger/ in gas than in liquids
 Forces of attraction in liquids are stronger/ higher/ greater/bigger/ than in gases

- 10. (In the diagram)
- 11. Stable equilibrium

 When it is tilted slightly Q rises/ c.o.g is raised when released it turns to its original position
- 12. This reduces air pressure inside the tube, pressure from outside is greater than inside/hence pressure difference between inside a outside causes it to collape
- Diameter coils different/ wires have different thickness/ no of turns per unit length different / length of spring different.
 (X larger diameter than Y)

Or in one coils are closer than in the other

- 14. Heated water has lower density, hence lower up thrust
- 15. a) Rate of change of momentum of a body is proportional to the applied force and takes to the direction of force
 - S = ut + $\frac{1}{2}$ at² 49 = 0 + $\frac{1}{2}$ x a x 7²
 - ii). V = u + at or $V^2 = u^2 + 2as$ = $0 + 2 \times 7 = 14 \text{m/s}$ $V^2 = 02 + 2 + 2 \times 2 \times 49$ $V^2 = 14 \text{m/s}$
 - c). i). $S = ut + \frac{1}{2}gt^2$ either $V^2 = u^2 + 2gs$ V = u + gt $V^2 = o^2 + 2 \times 10 \times 1.2$ $V = \sqrt{\frac{1.2}{5}}$ $V = \sqrt{\frac{1.2}{4}} = 4.899$

$$= 0.49s$$
 $4.899 = 0 + 10t$ $T = 0.4899s$

ii). s = ut $u = \frac{8}{t} = \frac{2.5}{0.49} = 5.102/5.103 \text{ m/s}$

- 16. a). Heat energy required to raise the temperature of a body by 1 degree Celsius/ centigrade or Kelvin
 - b). measurements initial mass of water and calorimeter M, final mass of water & calorimeter, M, Time taken to evaporate(M, > M,), t Heat given out by heater € heat of Evaporation = M_r

or (if this method is used) initial mass of water + calorimeter + m, Initial mass of water + calorimeter + M, Time taken to heat = t Heat given = heat gained by water, out by heat + heat gained by calo + eat of evaporation

- $25) = 40 \times 9 = 360J$
 - $1000 \times 10^{-2} \times 4.2 \times 10^{3} (34 25) = 3780$ J

100 × 10⁻²

100 × 10⁻² or Sum of (i) and (ii) $=150 \times 103 \times \text{cm} \times 66$ 360 + 3780= 4140J

iv). $150 \times 10^{-3} \times \text{cm} \times 66 = 4140 \text{ heat lost} =$ heat gained + heat gained by water 9.9cm = 360 + 3780 $cm = \frac{4140}{150 \times 10^{-3} \times 60}$

=418J/Kgk=418J/Kgk

- 17. a). lowest temperature theoretically possible or temperature at which / volume of a gas/ pressure of gas/ K.E (Velocity) of a gas is assumed to be zero
 - b). Mass / mass of a gas pressure / pressure of a gas/ pressure of surrounding
 - c). i). $4 \times 10^{-5} \text{m}^3 / 40 \times 10^{-6} \text{m}^3 / 40 \text{cm}^3$
 - ii). -275°C 280°C
 - iii). a real gas liquefies /solidifies

d).
$$\frac{P_1 V_1}{T_1} = \frac{P_2 P_2}{T_2} \text{ but } V_1 = V_2$$

$$P_2 = \frac{P_1 T_2}{T_1} = 9.5 \times 104 \times \frac{283}{298}$$

$$= 9.02 \times 10^4 \text{ pa}$$

$$= (90200 \text{ pa})$$

$$= (90200 \text{ pa})$$

$$= (902.2 \times 10^3 \text{ pa})$$

$$= (90.2 \times 10^3 \text{ pa})$$

If
$$\frac{P}{T_1} = \frac{P_2}{T_2}$$
 is used max marks 3
$$P_2 = \frac{P_1 P_2}{T_1}$$

$$= 9.5 \times 104 \times \frac{283}{298}$$

$$= (90200 \text{ pa})$$

$$(90.2 \times 10^3 \text{pa})$$

18. a).
$$VR = \frac{Effort distance}{Local distance}$$

b). i). Pressure in liquid is transmitted equally through out the liquid if term fluid is Cused term in compressive must be staled

P × A × d = P × a × d a × d = A × D
$$A \times D = a \times d$$

$$\frac{d}{D} = \frac{A}{a}$$

$$VR = \frac{A}{a}$$

$$\frac{d}{D} = \frac{A}{a}$$

$$VR = \frac{A}{a}$$

c). i). MA =
$$\frac{\text{Load}}{\text{Effort}}$$

= $\frac{4.5 \times 10^3}{135}$
= $33.3 \left(33\frac{1}{3}\right)$

ii). Efficiency =
$$\frac{MA}{VR} \times 100\%$$
 Efficiency = $\frac{MA}{VR} = 33.3$
= $\frac{33.3}{45} \times 100\%$ = 0.74
= 74%

iii). % work wasted =
$$100\% - 74\%$$

= 26%

19. a). When an object is in equilibrium, sum of anticlockwise moments about any point is equal to the sum of clockwise moments about that point

b). i).
$$V = 100 \times 3 \times 0.6 = 180 \text{cm}^3$$
 $M = VP$
 $180 \times 2.7 = 486g$
 $W = Mg$

$$= \frac{486}{1000} \times 10 \text{ pc}^{-1}$$

$$= 4.86 \text{ No}^{-1}$$
 $W = Mg$

$$= \frac{2.7 \times 3 \times 0.6 \times 100 \times 10}{1000}$$

$$= 4.86 \text{ No}^{-1}$$

ii). Taking moments pivot; 20F = 15 × 4.86

ii). Taking more into pivot;
$$20F = 15 \times 4.86$$

$$F = \frac{15 \times 4.86}{20} = 3.645$$

$$F = \text{taking moments about W; } 15R = 35F - (i)$$

$$F + W = F = R - 4.86 - (ii)$$

$$\text{Taking moments about } F = 20R = 4.86 \times 35$$

$$R = 8.51 \text{ and } F = R \text{ W}$$

$$R = F = 8.51 - 4.86 = 3.645N$$

$$R = F + W = 3.65 + 4.86$$

iv). As x increase / anticlockwise moments reduces/ moments to the left reduces/ distance between F and pivot reduces F has to increase to maintain equilibrium.