NAME \qquad .INDEX NUMBER \qquad
\qquad

232/2
Candidate's Signature \qquad

Paper 2
Date. \qquad
March /April 2013
2 hours

MOKASA JOINT EXAMINATION

Kenya Certificate of Secondary Education PHYSICS

Paper 2
2 hours

INSTRUCTIONS TO CANDIDATES

Write your name and index number in the spaces provided above
Sign and write the date of examination in the spaces proviged above.
This paper consists of TWO sections: \boldsymbol{A} and \boldsymbol{B}.
Answer ALL the questions in sections \boldsymbol{A} and \boldsymbol{B} in the spaces provided.
ALL working MUST be clearly shown.
Non-programmable silent electronic calolators and KNEC mathematical tables may be used.
This paper consists of 15 printed pages.
Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (25 marks)
Answer ALL the questions in this section in the spaces provided
1 Explain what happens to the leaf divergence when the cap of a charged electroscope is connected to the cap of a similar uncharged electroscope using a copper wire. (2marks)

2 Eight dry cells can be arranged to produce a total e.m.fofliv just like a car battery.
(a) What is the e.m.f of an individual cell?

(2marks)
(b) Why is it possible to start the car - ith the lead acid accumulator, but not with the eight dry cells in series?

3 The distance between a pin-hole and the screen of a pinhole camera is 10 cm . when the camera is paced 60 m away from a tree. A sharp image 3 cm high of the tree is formed on the $e^{\text {screen. Determine the height of the tree. }}$
(3marks)

\qquad
\qquad

4 Figure 1, shows a thermistor T and a bulb B connected to two identical ammeters A_{1} and A_{2}.

Figure 1

When the switch is closed both ammeters indicate the sameading initially. However as the current flows for some time A_{2} increases and A_{1} de\&feases, explain this observation.

5 Figure 2 shows a ray of light incident on the surface AC of a right-angled glass prism ABC at right angle. The critiequagle of the glass is 42°. Complete the diagram to show the path of the ray until it leaves the prism.

Figure 2

6 A soldier standing between two cliffs fires a gun. He hears the first echo after 2 seconds and the next after 5 seconds. Determine the distance between the two cliffs. (Take Velocity of Sound in Air $=340 \mathrm{~m} / \mathrm{s}$)
(3marks)
\qquad
\qquad
$7 \quad$ State two advantages and one disadvantage of a convex mirror when used driving mirror.

8 Figure 3, show bar magnets draw the pattern offlthe magnetic field around the bar magnets.

Figure 3

(2marks)

10 An electric bulb is marked $240 \mathrm{~V}, 100 \mathrm{~W}$. It contains a length of fine tungsten wire of about 1 m long coiled. When switched on, the wire reaches a temperature of about $2500^{\circ} \mathrm{C}$.
(i) What is the meaning of $(240 \mathrm{~V}, 100 \mathrm{~W})$?
(1mark)
(ii) Why is the wire coiled?

SECTION B (55 marks)
Answer $\boldsymbol{A L L}$ the questions in this section ins the spaces provided.
11 A transformer with primary coils of 400 turns-and secondary coil of 200 turns is connected to 240 V a.c mains. Calculate
(a) The secondary voltage.
(2marks)

(b) If the primary current is 3.0 A and secondary current is 5.0 A , what is the efficiency?

\qquad
\qquad
(c) How is energy loss minimized in transformer due to
(i) Eddy current?
(ii) Hysteresis loss?

(d) Figure 4, shows a simple generator. The coil is rotated in the cekwise direction as

(ii) Indicate using an arrow on the figure, the direction of the induced current as the coil passes the position shown.
(iii) State two ways of increasing the magnitude of the induced current in this type of generator.
\qquad
\qquad

(iv) On the axis provided, sketch the graph of the induced e.m.f again $\$$ time. (1mark)

12 (a) Complete the wave mon in Figure 5 (i) and (ii).
(4marks)

(ii)

Shallow
Deep
Figure 5(ii)

(b) Figure 6, shows two identical coherent sources S_{1} and S_{2} o fight waves. What are the conditions for bright fringes to occur between two coherent sources S_{1} and S_{2} at P and dark fringes at R ? (Assume S_{1} and S_{2} have the same amplitudes). (2marks)

(c) Figure 7 shows a circuit containing three capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3}.

Figure 7
C_{3}
(i) Write an expression for the effective capacitance between X and Y . (2 marks)

(d) What are the effect on capacitance of a parallelplate capacitor when
(i) Increasing the area overlap of the plates?

(ii) Increasing the distance of separation between the plates?

13 (a) A student was provided with the following components: connecting wires, a battery, a variable resistor, (a witch, an ammeter and a voltmeter. She was required to measure the voltage across tee cell for various values of current drawn from it. Draw a possible circuit diagram foffis experiment. (3marks)

\qquad
\qquad
\qquad
(b) Figure 8, show the voltage- current relationship for a certain battery used in the electrical circuit in (a) above.

Given that the equation of the graph is $\mathbf{V}=\mathbf{E}-\mathbf{I r}$, from the graph, determine:
(i) The e.m.f of the battery.
(ii) The internal resistance of the battery used.
\qquad
\qquad

(c) Figure 9, shows a network of resistors connected to power supply of 1

Figure 9

Determine

(i) The effective resistance of the network.
(2marks)

(ii) The voltage across the 3 resistor.
\qquad
\qquad

14 The image formed by a convex lens is erect.
(a) On Figure 10 below, draw the object and using ray diagram, locate and draw the erect image.

Figure 10
(b) Apart from being erect, state two other charageristics of the image. (2marks)

(c) In an experimen to determine the focal length of a converging lens using the lens formula, seferal values of image distance corresponding to value of object distance U were determined and a graph of magnification m against image distance v, plotted as shownin Figure 11 below.

(ii) Determine the focal length of the lens.
\qquad
\qquad
(iii) Find the value of object distance for which the image is not magnified.

\qquad

15
(a) State two factors that affect the strength of an electrengignet.
(2marks)

(b) In Figure 12; the suspended metre rule is balanced by the magnet and the weight shown. The iron core is fixed the bench.

(i) State and explain the effect on the metre rule when the switch is closed. (3marks)
\qquad
\qquad
\qquad
(ii) What would be the effect of reversing the battery terminals?

Figure 13 shows the relationship between the magnetic strength and the magnetizing force.

Give thereasons for the shape of the curve in terms of domains theory. (3marks)

\qquad
\qquad

