Name:		QaQ [®]	Index No.
	e et caetai		
School:	<u>,</u>	Date:	
Sign	zi [×] mun Ezec		
232/1	37		
PHYSICS			
PHYSICS PAPER 1			
JULY /AUGUST 2012			
TIME: 2 HOURS			

JOINT INTER-SCHOOLS EVALUATION TEST (JISET)

Kenya Certificate of Secondary Education (K.C.S.E.) 2012

232/1

PHYSICS

PAPER1

JULY /AUGUST 2012

INSTRUCTIONS:

- ❖ Write your name and index number in the space provided above
- ❖ Sign and write the date of examination in the spaces provided above.
- ❖ This paper consist of **TWO** section **A** and **B**
- ❖ Answer **ALL** questions in section **A** and **B** in the spaces provided.
- **ALL** working must be clearly shown.
- ❖ Mathematical tables and electronic calculators may be used. Take $g = 10 \text{m/s}^2$

FOR EXAMINERS USE ONLY

SECTION	QUESTION	MAXIMUM	CANDIDATES SCORE
		SCORE	
A	1-14	25	
В	15	9	
	16	13	
	17	9	
	18	10	
	19	14	
	TOTAL SCORE	80	

SECTION A (25MARKS)

1.	. An air bubble expands as it rises to the surface of water in a deep pond. State the cause	e of this
	given that the temperature remains constant.	(1mrk)
	S. S	
2.	. The simple pulley in figure 1 is used to lift a 3kg mass.	
Ę	F 3kg	
.e ´TI	hrough what distance must the string at F be pulled to lift the mass 0.2m high.	(2mrks)
3.	. The thermal conductivity of a metal increases with the increase cross-sectional area of Explain how the cross-section affects conductivity using the electron movement.	the metal (1mrk)
•••		
•••		
4.	. The set up figure 2 is used to investigate the effect of pressure on melting point. It is ob	served
	that the thin wire cuts through the ice block but it remains one piece.	
	Thin wire Masses	
E	xplain the observation above.	(2mrks)
•••		••••••
•••		••••••

© BGM 2012 232/1

5. (i). Explain why a liquid and not a gas is used as a hydraulic machine fluid.

(1mrk)

		en e	
	•••••	ex	
ii). <i>State</i> the	other impo	rtant property of a liquid that hydraulic machines depend on.	(1n
	,	<u>G</u>	
	2.0 2.0		
	2	alpead on an invented boul	•••••
Δ.*	ws a marbie	e placed on an inverted bowl. Marble	
4CSE			
ê je		Bowl	
e free test fo	77777777		
State and explai	n the type c	of equilibrium the marble is.	(2m
		orces acting on an object, P is a force of 20 N and the object moving the value of the opposing force F?	
constant velo	P P	is the value of the opposing force F? F	
constant velo	P P	is the value of the opposing force F? F Figure 4	
constant velo	P P	is the value of the opposing force F? F Figure 4	
constant velo	P P	is the value of the opposing force F? F Figure 4	/es wit
constant velo	P P	is the value of the opposing force F? F Figure 4	
constant velo	P P	is the value of the opposing force F? F Figure 4	
ii). Figure 5 show	P rs the forces	is the value of the opposing force F? F Figure 4	

	A Rest of the second se	
	<u>g</u> a ^{jo}	
b	o). State what happens to the drop when force A = force B	(1mrk)
	A de la companya de l	
8	3. State two molecular differences between a real gas and ideal gas.	(2mrks)
	Ş ^{QQ} .	
	- Constant of the second of th	
	1cs,	
\$		
Noze 9	O. A man lifts a weight of 300N through a vertical height of 2m in 6 seconds. Determine the	he power
	developed.	(2mrks)
1	.0. A drop of Methylated spirit placed on the back of the hand feels colder than a drop of	water at
	the same temperature.	(1mrk)
•••		
	.1. "Air flow over the wings of an air craft causes a lift". Explain this statement with the ai	d of a
_	labeled diagram.	(2mrks)
		(=:::::0)

12. Figure 6 shows a suspended copper solid immersed in a fluid.

String 4

Figure 6 visit word Free Kesepast paperts com Explain what will he pen to the tension in the string if a liquid of higher density is used. (1mrk) 13. A bucket containing water is rotated in vertical circle of radius 80cm. What should be its velocity so that the water may not spill out. (2mrks) 14. A rubber ball of mass 400g strikes a wall horizontally at 6.0m/s and bounces back at 4m/s. In 0.02 second. Determine the total force it exerts on the wall. (2mrks)

SECTION B (55MARKS)

5 © BGM 2012 232/1

	15. a) State the pressure law of an ideal gas.	(1mrk)
	eg ^o o ^s	
	S. F. C. S.	•
	£7,6	•••••
	Willia.	•••••
	b). At 20 ^o c the pressure of a gas is 50cm of mercury. At what temperature would the pr	essure of the
	gas fall by 30cm of mercury. Give the temperature in degrees Celsius.	(2mrks)
	Q ² ² ²	
	T _{C2}	
	, & ^{, &}	
Oyle	<i></i>	
	c). Define the absolute zero of the Kelvin temperature scale.	(1mrk
	d) A hole of area 2.0 cm ² at the bottom of a tank 2m deep is closed with a cork. Determ	ine the force
	on the cork when the tank if filled with water. Take density of water = 1000kgm ⁻³ and g	= 10m/s ²
		(4mrks

16. Ian has a mass of 70kg. He dives from a high diving pond. His vertical velocity at different times is shown in the graph in figure 7.

© BGM 2012 232/1

i) Determine the height of the diving board	(3mrks)
ii) Determine the retarding force on Ian in the water.	(3mrks)
b) i) <i>Calculate</i> the loss of Ian's Potential energy after 0.5sec diving.	(3mrks)

© BGM 2012 232/1

ii). Determine Ian's kinetic energy 0.5s after he started the dive.

(3mrks)

© BGM 2012 232/1

d). Sketch a graph of gravitational potential energy of the child against height as she moves from

b) Heat gained by the calorimeter and water.

(4mrks)

iii) Explain why the spring balance gives different reading in figure 9 (b) and 9 (c) with the same

ii). Figure 10 below shows a uniform plank of length 6.0cm acted upon by forces shown. If the plank has a weight of 30N, determine the weight of W given that volume of metal block is $5000cm^3$, density of water = $1g/cm^3$ (4mrks)

Figure 10.

232/1