	je.	^د
Name	a ^{X Q Q Q}	Index No
School		Date
Candidate'	s signature	
	s signature	
232/1	A'te'	
PHYSICS Paper 1	ert	
July / Augu	st 2012 ²	
Time 2 HO	U RS	
Paper 1 July / Augu Time 2 HO	ô _o	
) ⁵ e	BURETI DISTRICT JOINT EV	VALUATION TEST - 2012
	Kenya Certificate of Secondar	ry Education (K.C.S.E)

0

BURETI DISTRICT JOINT EVALUATION TEST - 2012

232/1 **PHYSICS** Paper 1 July / August 2012 **Time 2 HOURS**

INSTRUCTIONS TO CANDIDATES

- Write your index no in spaces provided. 1.
- 2. This paper consists of two sections A and B
- 3. Answer all questions in the spaces provided
- 4. Non-programmable calculators and mathematical tables may be used
- Show all your workings 5.

SECTION	QUESTION	MAX. SCORE	CANDIDATES
			SCORE
A	1 – 11	25	
	12	14	
	13	14	
В	14	10	
	15	9	
	16	8	
	TOTAL	80	

This paper consists of 12 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing

1. (i) What is the name of the instrument shown below

(1mk)

of the instrument has zero error of 0.04cm, find the diameter of the sphere (2mks)

A block of copper of mass 2kg and specific heat capacity of 400J/kg/K initially at 121°C is immersed in water at 20°C. If the final temperature is 21°C, determine the mass of water.
 (specific heat capacity of water is 4200J/kgk)
 (3mks)

• • •	• • • •	 	 	• •	• • •	 • •	 • •	 • •	 		• •	• •	• •	 	• • •	• •	 • •	• •	 • • •	• •	 • •	 	• •	 • •	 • •	• •	 • •	• • •	• • •	 • •	• • • •
		 	 			 	 	 	 					 		٠.	 		 		 	 		 	 		 			 	
		 	 		· • •	 	 	 	 	•••		••		 			 		 . 		 	 		 	 		 ٠.		· • •	 	
		 	 			 	 	 	 					 			 		 		 	 		 ٠.	 		 ٠.			 	
		 	 			 	 	 	 					 			 		 		 	 		 ٠.	 		 ٠.			 	

Sketch a graph of velocity against time of a steel ball which is dropped to fall through glycerine in ie of a significant de la sign (3mks)

	co ^{ft}	
4.	Oil drop of mass 1.0 x 10 ⁻³ kg falls on water and spread out to form a circular patch 1.0m	in
	diameter. Find the density of oil if thickness of the film on water is 1.3 x 10 ⁻⁶ m	(2mks)
	at care and a second a second and a second a	
	and E.	
	, i e i k	
5.	Some water in a tin can was boiled for some time. The tin can was then sealed and coole	d. After
	sometime it collapsed. Explain this observation	(2mks)
	ACSY.	
& Leg	<i>0</i>	
0		
6.	The figure below shows a uniform metre rule pivoted at 30cm mark. It is balanced by weight of 2Nsuspended at the 5cm mark.	
	5cm 30cm	
	2N	
	Determine the weight of the meter rule	(3mks)
7		
7.	The weight of a solid in air is 5.0N. When it is fully immersed in a liquid of density	

(2mks)

 800kgm^{-3} its weight is 4.04 N determine the volume of liquid displaced.

COLL

8. The figure below shows a mass of 200g connected by a string through a hollow tube to mass of 0.5kg. The 0.5kg mass is kept stationary in the air by whirling the 200g mass round in a horizontal circle of reading 1.0metre

ç .		Determine the angular velocity of the 200g mass	(3mks)
			• • • • • • • • • • • • • • • • • • • •
	9.	A steel ball bearing is allowed to fall freely in a viscous liquid. State the condition	• • • • • • • • • • • • • • • • • • • •
		necessary for it to attain terminal velocity	(1mk)
	10.	State reason why heat transfer by radiation is faster than by conduction	(1mk)
	10.	State reason why heat transfer by radiation is faster than by conduction	(1111K)
	11.	A body is projected vertically upwards from the top of a building. If it lands on the bas	se of the
		building, sketch the velocity time graph for the motion	(2mks)

12.	The figure below shows the m	otion of a trolley on a ticker timer. The ticker has fro	equency of
	50HZ		

	(a) (i)	Calculate the initial velocity between A and B	(2mks)
	, sp.		
\$ ⁷ e ^e	,		
thote			
&o,	(ii)	Calculate the final velocity between C and D	(2mks)

(ii)	Calculate the final velocity between C and D	(2mks
 		· · · · · · · · · · · · · · · · · · ·

(iii)	Calculate the acceleration of the trolley during the motion	(3mks)

(b) A ball is dropped from the top of a vertical cliff 45m high. Given that the velocity just before striking the sandy beach is 30m/s and the ball penetrate the sand to a depth of 10cm. Determine its average retardation. (3mks)

1Ç	SS																																																						
		٠.	٠.	٠.	 •	 	•	 ٠	 •	 ٠	 •	 •	 	•	 	٠	 •	 	 •	٠.	 •	٠	٠			٠	٠	 	٠	٠	٠.	 ٠	•	 •	٠	 •	•	 ٠	•		٠	٠		٠		•	 	 	٠	•	 •	 •	٠.	٠.	•

(ii) If the velocity just before reaching point C is 0.6m/s. Calculate the power developed by the engine at this point (2mks)

13. The figure below shows a hydraulic press

(2mks)

(a)	The piston has negligible weights and no frictional forces	(3m)
(b)	The small and larger pistons have negligible weights and frictional forces 10N a	and 401
	respectively	(3m
,	Q ^R Z	
105 ⁸		
		• • • • • • • •
(c)	The small piston has a weight of 5N, the larger piston has weight of 10N and th	e fricti
(-)	forces are negligible	(3m
 (d)	In a hydraulic brake the master piston has an area of 4mm ² and the wheel pistor	
 (d)	each has an area 4cm ² . Find the forces applied to the wheel when a force of 10N	
 (d)		l is
 (d)	each has an area 4cm ² . Find the forces applied to the wheel when a force of 10N	l is
(d)	each has an area 4cm ² . Find the forces applied to the wheel when a force of 10N	N is
(d)	each has an area 4cm ² . Find the forces applied to the wheel when a force of 10N	l is
	each has an area 4cm ² . Find the forces applied to the wheel when a force of 10N applied on the master piston	N is (3m
(d)	each has an area 4cm ² . Find the forces applied to the wheel when a force of 10N applied on the master piston	(3m
	each has an area 4cm ² . Find the forces applied to the wheel when a force of 10N applied on the master piston	(2m

14.	In an experiment to determine the density of sand using a density bottle,	the following
	measurements were recorded.	
	measurements were recorded. Mass of empty density bottle = 43.2gg Mass of density bottle full of water = 66.4g	
	Mass of density bottle full of water = 66.4g	
	Mass of density bottle with some sand = 67.5g	
	Filled up with water (sand, watered bottle) = 82.3g	
	Use the above information to determine the;	
	(a) Mass of the water that completely fill the bottle	(2mks)
		
<u>_</u> e	¢	
Note Ete	(b) Volume of water that completely filled the bottle	(1mk)
40,		
	(c) Volume of the density bottle	(1mk)
	(d) Mass of sand	(1mk)
	(e) Mass of water that filled the space above the sand	(1mk)
	(f) Volume of the sand	(2mks)

	(g)	Density of the	ic sand	ace,		(2mks)
15.	(a)	Explain why	\sim	to use the pressure cook	er for cooking at high	altitudes(2mks)
	(P)E	Water of ma		at 20^{0} C is heated in an e		Okw. The
e	<i>y</i>	water is heat	ted until it boils	at 100°C. Taking specif	ic heat capacity of wa	ater to be
mote ste			⁻¹ , heat capacity MJ/kg, calculate	of kettle = $450J/kg$, spe	ecific latent heat of va	porization of
Δ.			heat absorbed by			(1mk)
		(ii) Heat	absorbed by the	electric kettle		(2mks)
		(iii) The t	time taken for th	ne water to boil		(2mks)
		(iv) How	much longer it	will take to boil away a	ll the water	(2mks)

The figure below shows an object of mass 0.2kg whirled in vertical circle of radius (b) 0.5m at uniform speed of 5m/s

f _C ,	Determine the tension in the string at					
	(i)	Position A		(3mks)		
•••••	(ii)	Position B		(3mks)		
•••••						
	(iii)	At what point is the st	ring likely to cut. Explain	(2mks)		

FOR More Free Kesh past pagers with the More Free Kesh past pagers with the More Free Rest past pagers with the More Free Rest past pagers with the More Free Rest pagers with the More Fr