Name

School \qquad Date.

Candidate's signature

\qquad

232/3
PHYSICS
Paper 3
PRACTICAL
July / August 2012
Time $21 / 2$ HOUR \bigotimes^{\varnothing}

BURETI DISTRICT JOINT EVALUATION TEST - 2012

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

1. Write your name and index number in the spaces provided above.
2. Sign and write the date of examination in the spaces provided above.
3. This paper consists of TWO questions: $\mathbf{1}$ and $\mathbf{2}$
4. ALL working MUST be clearly shown
5. Mathematical tables and electronic calculators may be used

FOR EXAMINERS USE ONLY

QUESTION 1

	a (iv)	a (vii)	a (viii)	a (ix)	a, b	Total
Maximum Score	6	5	3	2	4	20
Candidate's Score						

QUESTION 2

	b	c (i)	c (ii)	c (iii)	Total
Maximum Score	10	5	3	2	20
Candidate's Score					

GRAND TOTAL	CANDIDATE'S SCORE	
	MAXIMUM SCORE	40

Question 1 Part A

You are provided with the following $a p$ paratus

- Two metre rules (one with a pied as a pointer)
- Two retort stands with clawín and bosses
- Two pieces of thread ab̌out 30 cm and 1 m long
- One helical spring s^{5}
- One 200 g masss or two 100 g masses
- A stop waich
- Foursimall pieces of wooden blocks

Procedure

Fig. 1

(ii) Suspend the ends of the metre rule with spring at 5 cm mark from the end so that the metre rule with the pointer is horizental.
Read the pointer positio $\mathrm{B}_{\mathrm{C}}^{\mathrm{C}}, \mathrm{L}_{0}=$ \qquad cm.
(iii) Hang 200 g on the horizontal metre rule at a length $\mathrm{L}=10 \mathrm{~cm}$ from the spring. Record the extension, e, of the spring in the table below.
(iv) Displace the mass slightly downwards and release it to oscillate vertically. Time for 10 oscillations and record the results in table 1
(v) Reperat (iii) and (iv) for other positions of L of the mass
(vi) Q^{2} Table 1

	10	20	30	40	50
Extension, e (cm)					
Time for 10 oscilations (s)					
Periodic time, T (s)					
$\mathrm{T}^{2}\left(5^{2}\right)$					

(vii) Plot a graph of $\mathrm{T}^{2}(\mathrm{y}-$ axis) against extension ' e '

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ix) Gixen that
$e^{\sigma^{x} T^{2} / 2}=\frac{4 \pi^{2} \mathrm{e}}{\mathrm{K}}+C$
Determine the value of K
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Part B

You are provided with the following

- A voltmeter
- An ammeter
- Six connecting wires with crocodile clips
- Two dry cells
- Cell holder
- Resistant wire labelled R , mounted on a carton
- Switch

Proceed as follows

(a) Set up the circuit as shown in figure 2

Figure 2

Close the switch. Read and record the ammeter and voltmeter readings
V. V

IA
(b) Determine the resistance of R
\qquad
............ ${ }^{\text {s }}$
2. You are peovided with the following apparatus

- A lenas
- CBuns holder
- Candle
- Two screens; one with hole having cross-wires
- Metre rule

Proceed as follows

(a) Set up the apparatus as in figure 3 with distance $S=42 \mathrm{~cm}$

Without changing the distance S move the lens slowly away from cross-wires until a sharp enlarged inverted image is formed on screen position L_{1}. Measure the distance U_{1} from cross-wires to the lens and record this value in table 2. Keeping distance S, constant move the lens away from cross-wires to a new position L_{2} where a small sharp inverted image is formed on the screen. Measure the new object distance U_{2} and record in table 2. Determine the displacement d of the lens from L_{1} to L_{2} (i.e $d=L_{2}-L_{1}$)
(b) By setting the distance S to distances $44,46,48,50$ and 52 cm as shown in table 2 repeat procedure (a). Measure and record the corresponding values of U 1 and U 2 in table 2

Table 2

S (cm)	42	$44{ }_{5}{ }^{\text {ei }}$	46	48	50	52
$\mathrm{U}_{1}(\mathrm{~cm})$						
U_{2} (cm)						
$\mathrm{d}\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)(\mathrm{cm})$						
$\mathrm{d}^{2}\left(\mathrm{~cm}^{2}\right) \quad$ 为						
$\mathrm{S}^{2}\left(\mathrm{~cm}^{2}\right) \quad \mathrm{s}^{2}$						
$\mathrm{S}^{2}-\mathrm{d}^{2}\left(\mathrm{~cm}^{2 \mathrm{C}^{65}}{ }^{5}\right.$						

\qquad

$e^{\partial(\text { iiii }} \quad$ Given that $S^{2}-d^{2}=4 \mathrm{fS}$, use your graph to determine the focal length of the lens

