	c ^o	•
NAME:		INDEX NO:/
SCHOOL:	gx ggg	CANDIDATE'S SIGN
DATE:		
	e exco	
	Man . F. C.	
232/2	4	
PHYSICS		
PAPER 2		
JUNE/JULY 2012		
JUNE/JULY 2012 OF TIME: 2 HOURS		

2

BUTERE DISTRICT JOINT EVALUATION - 2012

Kenya Certificate of Secondary Education (K C.S.E.)

INSTRUCTIONS TO CANDIDATES

- *a)* Write your name and Admission number in the spaces provided.
- *b*) Sign and write the date of the examination in the spaces provided.
- c) This paper consists of **Two** sections **A** and **B**
- *d*) Answer *ALL* questions in sections *A* and *B* in the spaces provided.
- e) All working MUST be clearly shown.
- *f) Non-programmable silent scientific calculators and mathematical tables may be used.*
- *g*) This paper consist of 12 printed pages
- *h*) Candidates should check the question paper and ascertain that all the pages are printed and that no questions are missing.

For Examiners' Use Only

SECTION	QUESTION	MAXIMUM	CANDIDATE'S
		SCORE	SCORE
A	1 - 12	25	
В	13	08	
	14	11	
	15	09	
	16	12	
	17	15	
TOTAL		80	

This paper consists of 12 Printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

SECTION A

(25 marks)

Answer ALL questions in this section in the spaces provided.

1. A gold leaf electroscope is positively charged as shown in the diagram below where C is the cap and L is the gold leaf. State and explain what happens to L when a positively charged rod is brought near C without touching it. (2mks)

¢

2. Sketch the magnetic field pattern between the two poles of the magnet shown below. (2mks)

A metal has	a work function of 2.0ev. Calculate the	threshold wavelength of the metal	given t
	¹⁹ C and h= 6.6 x 10 ⁻³⁴ Js.	C	(3m
	, ix		`
	A'		
ó	Ş [©]		
¥			
,e			
	signed an a.c generator which produce th he can improve his generator to incr		
ways in which			State to (2m
ways in which	ch he can improve his generator to incr		
The following	g equation represents a decay series.		
The following 210 x 83	The help can improve his generator to increase the can improve his gene	ease the p.d output.	(2m
The following 210 x 83	g equation represents a decay series. $ \frac{210}{84} \xrightarrow{\alpha} \xrightarrow{a} \xrightarrow{b} Q $	ease the p.d output.	(2m
The following 210 x 83	g equation represents a decay series. $ \frac{210}{84} \xrightarrow{\alpha} \xrightarrow{a} \xrightarrow{b} Q $	a and b (3m	(2m
The following 210 x 83	g equation represents a decay series. $ \begin{array}{c} 210 \\ \hline 84 \end{array} \qquad \begin{array}{c} \alpha \\ b \end{array} \qquad \begin{array}{c} a \\ b \end{array} $ radiation x and determine the values of	a and b (3m	(2m

Physics 232/2 3 © June – July – 2012 Turn Over

7.	State one reason why in the construction of car head lamps parabolic reflectors are	
	preferred to spherical reflectors.	(1 mk)
	g ex co	
8.	An electric heater 480 Quis connected to a 240V mains supply. Determine the energy	
	dissipated in 4 mightes.	(3mks)
	Z Parts	

9. The figure below shows the paths of two rays which enter the extremities of the eye from a small object immersed in water.

Draw lines on the diagram to show a possible apparent position of the object and its true position (2mks)

10. The diagram below shows part of a wave form. The numbers on the diagram show scales in meters. If the speed of the wave is 20ms⁻¹, determine the frequency and wavelength of the wave. (3mks)

.....

11. The chart below shows an arrangement of different parts of the electromagnetic spectrum.

Radio	A	Visible	В	X – Rays	Gamma
					Rays

Name the possible radiations represented by letter **B**. (1mk)

12. The diagram below shows an object placed some distance from a biconcave lens.

Construct the image on the diagram

(2mks)

SECTION B (55 MARKS)

Answer ALL questions in this section in the spaces provided after each question.

13. a) The graph below shows the relationship between 1/u and 1/v for a converging lens where u and v are the object and mage distances respectively.

From t	the graph, determine the focal length, f of the lens	(4mks)
b)	State two conditions necessary for total internal reflection to occur.	(2mks)

c) The figure below shows the path of gray of light passing through a rectangular block of Perspex placed in air.

Cests Pas

Calculate the refractive index of Perspex.									

14.

a)

(i)	State two properties of X — rays	(2mks)
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		

(ii) In a certain X-ray tube, electrons are accelerated by a potential difference of 10KV. Assuming that 5% of the energy is converted into X — rays, determine the frequency of the X-rays produced. ($h = 6.62 \times 10^{-34} Js$, $e = 1.6 \times 10^{-19} C$) (3mks)

.....

1 \	D 11 1 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c 1
b)	Describe how a P-type semiconductor is	formed

(3mks)

																														¢	9
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ò	Ş	Ç	Ç	
																						٠,		4	,	2	ř				

c) The diagram below shows results obtained in an experiment to study diffraction patterns in a double slit experiment.

Explain the shape of the graph. (3mks)

15. a) The figure below shows a transverse stationary wave along a string.

i. Label the nodes and antinodes.

(1 mk)

c_{O}
If the distance between an anti-node and a node is 1.0 x 10 ⁻³ m, determine the

ii. If the distance between an anti-node and a node is 1.0×10^{-3} wavelength of the stationary wave.

(2 mks)

i six wan.

b) Five successive wave-fronts in a ripple tank are observed to spread a distance of 6.4 cm. If the ibrator has a frequency of 8 Hz, determine the speed of the waves. (2 mks)

c) The figure below shows one of the common eye defects.

i. State the type of defect and its possible cause. (2 mks)

ii. On the same diagram, show how the defect can be corrected (2 mks)

16. a) State two ways of increasing the capacitance of a parallel plate capacitor (2mks

.....

Calculate the charge stored by the 1.5 µ. F capacitor.

(3mks)

Indicate the direction of the current in the coil in the set up below. Label the c) polarity at the points marked X and Y (3mks)

Physics 232/2 © June – July – 2012 Turn Over

	c c c c c c c c c c c c c c c c c c c								
d)	In a radio therapy unit of a hospital, a transformer is used to 150 KV to an X — ray tube from 2240 V a.c. mains supply.	supply a potential difference of A current of 100 m A flows in							
	the X-ray tube. Assuming the transformer is 100 % efficient, calculate								
	i. Current in the primary coil	(2 mks)							
	art. V								

ii. Part The turns ratio of the transformer (2mks)

What do you understand by the term **e.m.f** of a cell?. (1mk)

(b) A cell of e.m.f **E** and internal resistance **r** is used to pass a current through various resistors R, Ohms and the values of current recorded in the table below.

R(Ohms)	1.6	2.1	2.5	3.6	5	8	
i(A)	1	0.8	0.7	0.5	0.37	0.24	
1/ _i (A ⁻¹)							

i. Complete the table for the values of **1/i** giving your answer to 3 d.p. (3mks)

ii. Plot a graph of 1/i versus \mathbf{R} . (5mks)

iii. Given that the equation $\mathbf{E} = \mathbf{I}(\mathbf{R} + \mathbf{r})$, use your graph to determine the values of \mathbf{E} and

 \mathbf{r} . (5mks)

© June – July – 2012 Physics 232/2 END