\qquad
\qquad
SCHOOL: \qquad
\qquad DATE: \qquad

232/2
PHYSICS
PAPER 2
JUNE/JULY 2012
TIME: 2 HOURS

BUTERE DISTRICT JOINT EVALUATION - 2012

Kenya Certificate of Secondary Education (K C.S.E.)

INSTRUCTIONS TO CANDIDATES

a) Write your name and Admission number in the spaces provided.
b) Sign and write the date of the examination in the spaces provided.
c) This paper consists of $\boldsymbol{T w o}$ sections \boldsymbol{A} and \boldsymbol{B}
d) Answer ALL questions in sections \boldsymbol{A} and \boldsymbol{B} in the spaces provided.
e) All working MUST be clearly shown.
f) Non-programmable silent scientific calculators and mathematical tables may be used.
g) This paper consist of 12 printed pages
h) Candidates should check the question paper and ascertain that all the pages are printed and that no questions are missing.

For Examiners' Use Only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
\mathbf{A}	$\mathbf{1 - 1 2}$	$\mathbf{2 5}$	
\mathbf{B}	$\mathbf{1 3}$	$\mathbf{0 8}$	
	$\mathbf{1 4}$	$\mathbf{1 1}$	
	$\mathbf{1 5}$	$\mathbf{0 9}$	
	$\mathbf{1 6}$	$\mathbf{1 2}$	
	$\mathbf{1 7}$	$\mathbf{1 5}$	
TOTAL		$\mathbf{8 0}$	

SECTION A

Answer ALL questions in this section in the spaces provided.

1. A gold leaf electroscope is positively efarged as shown in the diagram below where \mathbf{C} is the cap and \mathbf{L} is the gold leaf. State and explaig what happens to \mathbf{L} when a positively charged rod is brought near C without touching it.

..
\qquad
\qquad
\qquad
2. Sketch the magnetic field pattern between the two poles of the magnet shown below.

3. State one advantage of generating a.c rather feran d.c voltages in a power station. (1mk)

4. A metal has a work functionsof 2.0 ev . Calculate the threshold wavelength of the metal given that $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ and $\mathrm{h}=6 . \mathrm{b}^{\circ} \times 10^{-34} \mathrm{Js}$.
(3mks)

A student designed an a.c generator which produces a current of 10 A at a p.d of 340 V . State two ways in which he can improve his generator to increase the p.d output.
\qquad
\qquad
\qquad
\qquad
6. The following equation represents a decay series.

Identify the radiation \mathbf{x} and determine the values of \mathbf{a} and \mathbf{b}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. State one reason why in the construction of çar head lamps parabolic reflectors are preferred to spherical reflectors.
8. An electric heater $480 \Omega^{\circ}$ is connected to a 240 V mains supply. Determine the energy dissipated in 4 miputes. (3mks)

9. The figure below shows the paths of two rays which enter the extremities of the eye from a small object immersed in water.

Draw lines on the diagram to show a possible apparent position of the object and its true position
10. The diagram below shows part of a wave fofin. The numbers on the diagram show scales in meters. If the speed of the wave is $20 \mathrm{~ms}^{-1}$, determine the frequency and wavelength of the wave. (3mks)

SECTION B (55 MARKS)

Answer ALL questions in this section in therspaces provided after each question.

13. a) The graph below shows the 'relationship between $1 / u$ and $1 / v$ for a converging lens where u and v are the object and $\stackrel{\text { mage distances respectively. }}{\text { a }}$

From the graph, determine the focal length, \mathbf{f} of the lens
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) State two conditions necessary for total internal reflection to occur.
\qquad
\qquad
\qquad
\qquad
c) The figure below shows the path of af fay of light passing through a rectangular block of

Calculate the refractive index of Perspex.
14.
a) (i) State two properties of X - rays
(2mks)
\qquad
\qquad
\qquad
\qquad
(ii) In a certain X-ray tube, electrons are accelerated by a potential difference of 10 KV . Assuming that 5% of the energy is converted into X - rays, determine the frequency of the X-rays produced. $\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{Js}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Describe how a P-type semiconductor ris 5 formed

c) The odiagram below shows results obtained in an experiment to study diffraction patterns in a

Explain the shape of the graph.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15. a) The figure below shows a transverse stationary wave along a string.

i. Label the nodes and antinodes.
ii. If the distance between an antis fiode and a node is $1.0 \times 10^{-3} \mathrm{~m}$, determine the wavelength of the stationary wave.
b) Fines successive wave-fronts in a ripple tank are observed to spread a distance of 6.4 cm . If the $\not{ }_{y}$ ibrator has a frequency of 8 Hz , determine the speed of the waves.
(2 mks)
c) The figure below shows one of the common eye defects.

i. State the type of defect and its possible cause.
\qquad
\qquad
\qquad
\qquad
ii. On the same diagram, show how the defect can be corrected
16. a) State two ways of increasing the capacitance of a parallel plate capacitor
\qquad
\qquad
\qquad
\qquad
b) The figure below shows a capacitor nétwork setup.

$e^{Q^{\sigma^{x}}}$ Calculate the charge stored by the 1.5μ. F capacitor.
c) Indicate the direction of the current in the coil in the set up below. Label the polarity at the points marked X and Y

d) In a radio therapy unit of a hospital, at $5^{\circ}{ }^{\circ}$. 150 KV to an X - ray tube from 20 V a.c. mains supply. A current of 100 m A flows in the X-ray tube. Assuming the transformer is 100% efficient, calculate
i. Current in the primery coil
...........................
\qquad

The turns ratio of the transformer
17. (a) What do you understand by the term e.m.f of a cell?.
\qquad
\qquad
\qquad
(b) A cell of e.m.f \mathbf{E} and internal resistance \mathbf{r} is used to pass a current through various resistors R, Ohms and the values of current recorded in the table below.

$\mathbf{R}($ Ohms $)$	1.6	2.1	2.5	3.6	5	8
$\mathbf{i}(\mathbf{A})$	1	0.8	0.7	0.5	0.37	0.24
$1 / \mathrm{i}^{\left(\mathrm{A}^{-1}\right)}$						

i. Complete the table for the values of $\mathbf{1} / \mathbf{i}$ giving your answer to 3 d.p.
ii. Plot a graph of $\mathbf{1} / \mathbf{i}$ versus R.
iii. Given that the equation $\mathbf{E}=\mathbf{I}(\mathbf{R}+\mathbf{r})$, use your graph to determine the values of \mathbf{E} and
r.

