\qquad
\qquad
\qquadDATE
\qquad
\qquad

232/3
PHYSICS

Paper 3

(PRACTICAL)
JUNE/JULY- 2012
Time: $21 / 2$ Hours

BUTERE DISTRICT JOINT EVALUATION - 2012

Kenya Certificate of Secondary Education (K C.S.E.)

INSTRUCTIONS TO CANDIDATES

1. Write your name and Index Number in the spaces provided above.
2. Sign and write the date of examination in the spaces provided above
3. Answer all the questions in the spaces provided in the question paper.
4. You are supposed to spend the first $\mathbf{1 5}$ minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully before commencing your work.
5. Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
6. Candidates are advised to record their observations as soon as they are made.
7. Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

QUESTION I

PART A	II	IV	V	VI
MAXIMUM SCORE	1	1	1	2
CANDIDATES SCORE				

TOTAL

PART B	II	III	IV	V
MAXIMUM SCORE	5	5	3	2
CANDIDATES SCORE				

QUESTION 2

PART C	a	g	h(i)	h(ii)	i
MAXIMUM SCORE	2	6	5	3	4
CANDIDATES SCORE					

TOTAL

TOTAL

\square
This paper consists of 8 printed pages.

Question 1 (Part a) (13 marks)

You are provided with the following apparatus

- Clamp
- Stand
- Optical pin
- Copper Wire
- Protractor (y'your own)
- Two pieces of plasticine
- Stop watch
- $e^{\sigma^{s} \text { Cork }}$

Set up the apparatus as shown in the diagram below.

b) Bend the wire in the middle so as to make an angle of 50°. Attach the two small pieces of plasticine at both ends of the bent wire as shown in the diagram
c) Place the bent wire on the optical pin and give a small horizontal displacement. Take the time for 10 oscillations and record in the table below:
d) Repeat the procedure above for othervalues of θ and complete the table below

Angle θ^{0}	Time t for 10 oscillations (sec)	Periodic Time Te Psec)	Frequency f (HZ)	$\mathrm{f}^{2}(\mathrm{~Hz})^{2}$	$\operatorname{Cos}(\theta / 2)$
50	$\sin ^{\circ}$				
60	${ }^{\chi}$				
70	$3{ }^{5}$				
$80 \text { e } e^{-x c^{4}}$					
90^{0}					
100					

e) (i) On the graph paper provided, plot a graph of f^{2} (y-axis) against $\operatorname{Cos}(\theta / 2)(4 \mathrm{mks})$
ii) Determine the gradient of the graph
iii) The equation for the oscillation of the wire is given by the formula $f^{2}=\frac{1.5 K}{4 \pi L} \cos \left(\frac{\theta}{2}\right)$

Given that $\mathrm{L}=0.15 \mathrm{~m}$
Use the gradient of the graph to determine the value of K
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 1 (part b) (7mks)

You are provided with the following apparatus:

- Prism
- 4 optical pins
- Plain paper
- Protractor Δ
- Someøflasticine
- Soft board
I) Set ur the apparatus as shown below.

II). Measure angle A of the prism using a protractor.
\qquad
\qquad
\qquad
Ill). Place the prism on a plain paper and trace its outline with a pencil. Attach some plasticine to the prism to indicate the prism angle, A.
Construct a normal at point T along LM. Draw an incident ray to strike the prism at 40°.

Replace the prism and stick pins P_{1} and P_{2} tef 自efine the incident ray. View pins P_{1} and P_{2} from the opposite face (MN). Insent pins P_{3} and P_{4} so that they appear to be in line with images of P_{1} and P_{2}
Remove the prism and join P_{3} addd P_{4} to give emergent ray.
Extrapolate the emergent ray
IV). a) Measưre angle D
(2mks)
 $\cdots \cdot p^{s^{x}}$边
b) Calculate the value of

$$
\eta=\frac{\cos \left(90^{\circ}-\frac{A+D}{2}\right)}{\operatorname{Sin}\left(\frac{A}{2}\right)}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c) What is the significance of η ?
\qquad
\qquad

Question 2
 (20 marks)

You are provided with the following

- Two dry cells (size D)
- One bulb
- \quad Voltmeter (0-3voŕ $0-5 \mathrm{v}$)
- Ammeter (0-2.5AN)
- A mounted nicrome wire mounted on a millimeter scale
- Switch $z^{5^{5}}$
- SeRen connecting wire at least two with crocodile clips
- e^{2} Micrometer screw gauge

Proceedes follows:
a) ${ }^{2} e^{8}$ i) Set up the circuit as shown in figure below:

b)
ii) With the crocodile clip at P take the voltmeter reading and the ammeter reading. Record V and I.
Repeat the readings for $d \delta=80,60,40,20$ and 0 cm respectively.
Complete the table betlow

Length(cin)	100	80	60	40	20	0
Voltage, V(V)						
Gurrent I(A)						

What changes do you observe on the bulb as L decreases from P ?
\qquad
iv) Plot a graph of the ammeter reading (y-axis) against voltmeter reading.
(Provide a graph paper)
v) Determine the slope of your graph at $\mathrm{V}=\mathrm{I}$ volt.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
vi) What physical quantity is represented by the slope of the graph at any given point (1 mk)
\qquad
\qquad
\qquad
c) i) Given the apparatus in a (i) above, draf^{5} a diagram of the circuit you would use to

ii) Set up the ciricuit you have drawn. Record the ammeter reading I and the voltmeter reading,V. when $L=100 \mathrm{~cm}$.
$\mathrm{V} \cdot \mathrm{e}^{e^{-2}}=$ \qquad
\qquad
iii) Using a micrometer screw gauge, measure the diameter of the wire. $\mathrm{d}=$ \qquad m
\qquad
\qquad
\qquad
iv) Calculate the quantity:

$$
\mathcal{f}=0.785 \frac{(V)}{I} \frac{\left(d^{2}\right)}{L} \text { and give its units, where } \mathrm{L} \text { is one metre. }
$$

