	com
NAME	······
SCHOOL	
	<u>s</u>

INDEX NO	/
ОАТЕ	

Leit www.freekcs CANDIDATE'S SIGNATURE.....

232/3 PHYSICS Paper 3 (PRACTICAL) **JUNE/JULY-2012** Time: 2¹/₂ Hours

TERE DISTRICT JOINT EVALUATION - 2012

Kenya Certificate of Secondary Education (K C.S.E.)

FOT NOTE FILEE **INSTRUCTIONS TO CANDIDATES**

- 1. Write your **name** and **Index Number** in the spaces provided above.
- 2. Sign and write the date of examination in the spaces provided above
- 3. Answer **all** the questions in the spaces provided in the question paper.
- 4. You are supposed to spend the first 15 minutes of the 2 ¹/₂ hours allowed for this paper reading the whole paper **carefully** before commencing your work.
- 5. Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- Candidates are advised to **record** their observations as soon as they are made. 6.
- 7. Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

OUESTION I

U = ========							
PART A	II	IV	V	VI			
MAXIMUM SCORE	1	1	1	2		TOTAL	
CANDIDATES SCORE							
PART B	II	III	IV	V		TOTAL	
MAXIMUM SCORE	5	5	3	2			
CANDIDATES SCORE							
QUESTION 2							
PART C	a	g	h(i)	h(ii)	i	TOTAL	
MAXIMUM SCORE	2	6	5	3	4		
CANDIDATES SCORE							
						GRAND TOTAL	
Can	T didates sl	his pap hould d	oer cons check th	sists of 8 ne auestid	printe on nan	ed pages. Der to ensure that all	

pages are printed as indicated and no questions are missing

• Clamp • Stories • Stories • Clamp

freekcse?

- Optical pin
- Copper Wire
- Protractor (your own)
- Two pieces of plasticine
- Stop watch
- Cork

Set up the apparatus as shown in the diagram below.

- Bend the wire in the middle so as to make an angle of 50°. Attach the two small pieces of b) plasticine at both ends of the bent wire as shown in the diagram
- Place the bent wire on the optical pin and give a small horizontal displacement. Take the time c) for 10 oscillations and record in the table below:

			о _с	\$				
d)	Repeat the procedure above for other values of θ and complete the table below (6mks)							
	Angle	Time t for 10	Periodic Time	Frequency f	$f^2(Hz)^2$	$\cos(\theta/2)$		
	θ^0	oscillations	Torsec)	(HZ)				
		(sec)	¢*					
	50	en.						
	60	,× www.						
	70	J ^{jp}						
	80 er	¢						
	90							
\$, \$ ⁶	100							
4CS+								
e ^r e ^e e)	(i) (On the graph pape	r provided, plot a	graph of f^2 (y-ax	xis) against Cos (<i>t</i>	$\theta/2$) (4mks)		
Note								
¢0 [°] r	ii) I	Determine the grad	dient of the graph			(1 mk)		
×								
	iii) 1	The equation for the	ne oscillation of the	he wire is given b	by the formula			
		$f^2 = \frac{1.5K}{4\pi L} \cos\left(\frac{\theta}{2}\right)$						

Given that L=0.15m

Use the gradient of the graph to determine the value of K (2mks)

3

Second Second Secon

- Protractor
- Someplasticine
- Soft board
- I) Set up the apparatus as shown below.

II). Measure angle A of the prism using a protractor. (1mk) Ill). Place the prism on a plain paper and trace its outline with a pencil. Attach some plasticine to the prism to indicate the prism angle, A. Construct a normal at point T along LM. Draw an incident ray to strike the prism at 40°.

			cott							
	Replace the	prism and stick pins P_1 are	d P_2 to define the incident ray. View	γ pins P ₁						
	and P ₂ from	the opposite face (MN). I	nsect pins P_3 and P_4 so that they appe	ear to be						
	in line with images of P_1 and P_2									
	Remove the	prism and join P_3 and P_4	o give emergent ray.							
	Extrapolate t	he emergent ray into the	prism so as to meet the extrapolated	incident ray at Q.						
	IV). a)	Measure angle D		(2mks)						
	Q ⁰	Śĸ								
2ª										
e ^e	ф b)	Calculate the value of		(3mks)						
for more fit		$\eta = \frac{\cos\left(90^{\circ} - \frac{1}{2}\right)}{\sin\left(\frac{4}{2}\right)}$	$\frac{A+D}{2} \right)$							
	c)	What is the significanc	e of η ?	(1mk)						

.....

Question 2

You are provided with the following

- $_{\text{verte}}$, $_{\text{verte}}$, $_{\text{constrained}}$, A mounted nicrome wire mounted on a millimeter scale
- Seven connecting wire at least two with crocodile clips
- Micrometer screw gauge

a) the for those and the formation of th Proceedas follows:

Set up the circuit as shown in figure below: i)

With the crocodile clip at P take the voltmeter reading and the ammeter reading. Record V and I. Repeat the readings for U = 80, 60, 40, 20 and 0cm respectively. ii)

Complete the table below

X						
Length(cm)	100	80	60	40	20	0
Voltage, V(V)						
Qurrent I(A)						

\$1,00	įiti ^s i 	What changes do you	u observ	e on the	bulb as I	L decrea	ases fron	n P?	 (1mk)
for Note	iv)	Plot a graph of the an (Provide a graph pap	mmeter 1 ber)	reading (y-axis) a	igainst v	voltmete	r reading.	 (5mks)

v)	Determine the slope of your graph at $V = I$ volt.	(2mks)
		•••••
vi)	What physical quantity is represented by the slope of the graph at any given point	(1mk)

© June – July – 2012

b)

		COTT	
c)	i)	Given the apparatus in a (i) above, draw a diagram of the circuit you would u	use to
		determine the current through the resistance wire and the potential difference	e across. (1mk)
		et C	
		E.C.	
	ii)	Set up the circuit you have drawn. Record the ammeter reading I and the vol	tmeter
		reading ∇ . when L = 100cm.	(2mks)
		$V q^{a^2} =$	
		a ⁵	
	. CSF	· · · · · · · · · · · · · · · · · · · ·	
e	·····		
e st		I =	
NOT			
\$°°			
	iii)	Using a micrometer screw gauge, measure the diameter of the wire.	(1 mk)
		d= m	
	iv)	Calculate the quantity:	
	D	$-0.785 \frac{(V)(d^2)}{d}$ and give its units where L is one metre	(mks)
	Ĵ	$\frac{-0.765}{I} \frac{-1}{L}$ and give its units, where L is one metre. (2)	211183)