Name \qquad Index No \qquad
School \qquad
\qquad
Candidate's Signature \qquad

121/2
MATHEMATICS
ALT .A
PAPER2
JULY / AUGUST, 2012
Time: $21 ⁄ 2$ Hours

KERICHO DISTRICT JOINT KCSE TRIAL EXAMINATION-2012

Kenya Certificate of Secondary Education (K.C.S.E)

121/2
MATHEMATICS
ALT .A
PAPER2
JULY / AUGUST, 2012
Time: $\mathbf{2}^{1 ⁄ 2}$ Hours

INSTRUCTIONS TO CANDIDATES

1. Write your name and index number in the spaces provided at the top of this page.
2. Sign an write the date of the examination
3. This paper consists of two sections: Section I and Section II.
4. Answer ALL questions in section 1 and ONLY FIVE questions from section II
5. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
6. Marks may be given for correct working even if the answers are wrong.
7. Non - Programmable silent electronic calculators and KNEC mathematical tables may be used, except were stated otherwise.

FOR EXAMINERS USE ONLY
Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

Section II

17	18	19	20	21	22	23	24	TOTAL

GRAND
TOTAL

This paper consists of 16 printed pages.

Candidates should check the question papeertio ensure that all pages are printed as indicated and no queestions are missing
SECTION I: (59 MARKS)
Answer ALL the questions in thissection in the spaces provided.

1. The dimensions of a rectanglecare 40 cm and 45 cm . If there is an error of 5% in the length and 8% in the width, find the percentage error in calculating the area of the rectangle. (4 mks)
2. Solve the equation $8 \sin 2 \mathrm{x}^{\circ}=7-2 \cos \mathrm{x}^{\circ}$ for $0^{\circ}<\mathrm{x}<360^{\circ}$.
3. Three equal unbiased dice are tossed simultaneously. Calculate the probability that the sum of 15 or more will be thrown.
4. Three people, Kamau, Kimutai and Onyangerare to share Ksh 44,000 among themselves in the ration a:b:c respectively. If $\mathrm{a}=1 / 2 \mathrm{~b}$ and $\mathrm{e} \rightarrow \frac{\mathrm{a}}{} 1 / 3 \mathrm{~b}$, find how much Kimutai will receives more than Onyango.
5. The diagram below shows a child's toy consisting of three solid plastic bricks fitting together to form a cone whose base radius $\mathrm{AB}=10.5 \mathrm{~cm}$ and it's height $\mathrm{AR}=24 \mathrm{~cm}$

If $\mathrm{Am}=\mathrm{MN}=\mathrm{NR}$ and the density of the plastic used is $0.3 \mathrm{~g} / \mathrm{cm}^{3}$ find the mass of the shaded brick.
6. Solve for x in the equation $2^{2 \mathrm{x}-1}+4^{\mathrm{x}+2}=264$
(2mks)
7. Solve the equation: $\log _{2}(2+3 \mathrm{x})+3 \log _{2} 2=2=2{ }^{5} \log _{2}(2 \mathrm{x}+6)$

Without using mathematical table or a calculator simplicity $\frac{3 \sqrt{5}+6 \sqrt{3}}{4 \sqrt{3}+2 \sqrt{5}}$
9. In the figure below $P Q R S$ is a rectangle. $P Q=30 \mathrm{~cm}$ and $P S=10 \mathrm{~cm}$.

The unshaded portions are cut off leaving a parallelogram ABCD

Given that line $\mathrm{BQ}=\mathrm{DS}=\mathrm{xcm}$ and line $\mathrm{CQ}=\mathrm{SA}=3 \mathrm{xcm}$; Find the value of x when the area of parallelogram $A B C D$ is maximum.
(4 mks)
10. a) Expand the expression $\left(x+\frac{3}{x}\right)^{5} \operatorname{in}_{x, 28}^{e^{-5^{5^{\circ}}}}$
b) Usefre expansion upto the forth term to evaluate $(10.3)^{5}$
11. A ball allowed to drop from a height of 16 m on to a floor rebounds to $3 / 4$ of it's previous height. Find the total distance the ball will have travelled when it hits the ground for the tenth times correct to four significant figures 1 .
12. The area of triangle $A B C$ is $42 \mathrm{~cm}^{2}$. The triangle $A B C$ is transformed using the matrix $\left(\begin{array}{ll}4 & X \\ 2 & 3\end{array}\right)$ to obtained the image triangle $A^{1} B^{1} C^{1}$ whose area is $168 \mathrm{~cm}^{2}$. Determine the value of x . (2mks)
13. Solve the equation $\left(\log _{4}^{x}\right)^{2}-\frac{7}{2} \log _{4}^{x}=-3 \cdot e^{\cdot e^{e^{x}}}$
14. A student's results in six mathematics's test were $24,28,32 \mathrm{x}, 48$ and 50 in that order. If the median is 36 , find the mean mark.
15. Make x the subject of the formula $y=\frac{a a^{-b^{5}}}{\left(x^{-a^{2}}+b\right)^{\circ}}$
16. Given that p varies directly as the square of x and inversely as y and that y varies directly as the product of p and x .
Determine how P varies with x .

SECTION II (50 MARKS)

Answer only FIVE questions in this section in the spaces provided.
17. The table below show income tax rate for the year 2010.

Income in α per month	Rate in sh per pound
$1-484$	2
$485-940$	2
$941-1396$	3
$1397-1852$	4
Over 1852	5

In the tax year of 2010 the tax of Kamau's monthly income was ksh 10880.50.If he is entitled to a tax redref of ksh 1156. Find
5) Gross tax of Kamau.
ii) Taxable income per month in shillings.
b) Apart from basic salary Mr. Kamau earn also a house allowance of Ksh 12,000 a medical allowance of Ksh 3060 and a hardship allowance of Ksh 4635.

Find his basic salary per month.
18. a) A plane leaves an airport $\mathrm{A}\left(40 \mathrm{~S}, 36^{\circ} \mathrm{PV} \mathrm{V}^{\circ}\right.$) at 9.00 a.m and flies due north to air port $\mathrm{B}\left(50 \mathrm{~N}, 36^{\circ} \mathrm{W}\right.$.) .Find the distance coovered by the plane in kilometers (Take $\mathrm{R}=6370 \mathrm{~km}$) and $\frac{1}{\mathrm{t}}=22 / 7$
b) After stopping for 30 minutes to refuel at B the plane then flies due east, to airport C,3500km from B. Find:
i) the position of c .
ii) the local time the plane land at C if its average speed from A to C is $1200 \mathrm{~km} / \mathrm{hr}$
(4mks)
19. a) Using a ruler and pair of compasses arfly construct triangle ABC in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}$

$$
=5.5 \mathrm{~cm} \text { and angle } \mathrm{ABC}=60^{\circ} \text {. Measure AC. }
$$

On the same side of AB as C .
i) determine the locus of a point p such that angle $\mathrm{APB}=60^{\circ}$.
ii) Construct the locus of R such that $\mathrm{AR}=3 \mathrm{~cm}$
iii) Identify the region T such that $\mathrm{AR} \geq 3 \mathrm{~cm}$ and $\angle \mathrm{APB} \geq 60^{\circ}$ by shading the unwanted part.
20. a) Complete the table below giving yours balue correct to 2 decimal place.

X	0	30	60	90	120^{2}	150	180	210	240	270	300	330	360
$\operatorname{Sin} \mathrm{x}$	0.00	0.50		1.00	e^{2}	0.50	0.00	-0.50			-0.87		0.00
$\operatorname{Cos}^{2} /{ }_{3} \mathrm{x}$	1.00		0.77	c^{5}	0.17		-0.50		-0.94	-1.00		-0.77	-0.50

b) On the grid provided, draw the graphs of $y=\sin x^{\circ}$ and $y=2 / 3 x^{\circ}$ for $0^{\circ} \leq x \leq 360^{\circ}$. (5 mks)
c) Use the graph to :-
i) solve the equation $\sin x^{\circ}-\cos 2 / 3 x^{\circ}=0$
ii) Determine the range of values for which $\sin \mathrm{x}^{\circ}<\cos ^{2} / 3 \mathrm{x}^{\circ}$ for the domain $0^{\circ} \leq \mathrm{x} \leq$ 360°.
21. Water flows through a cylindrical pipe of diafheter 8.4 cm at a speed of $50 \mathrm{~m} /$ minutes
a) Calculate the volume of water delivered by the pipe per minute in litres.
b) A cylindrical storage tank of radius 105 cm is filled by water from this pipe and at the same rate of flow.
Water begins flowing into the empty storage tank at $9.30 \mathrm{a} . \mathrm{m}$ and is full at 2.00 pm . Calculate the height of thin tank in metre square.
(4mks)
c) A family consumes the capacity of this tank in one month. The cost of water is sh 50 per thousand litres and fixed basic charge of ksh 1650. Calculate the cost of this family's water bill for a year.
22. In an experiment two quantities p and q were 6 bserved and the results obtained were recorded as given in the table below.

Q	1	2	3 sten $^{\text {en }}$			
P	2.70	5.70	41.15	22.62	45.20	90.51

It is thought that p and q are connected by the formula $(b+q)$ $\mathrm{p}=\mathrm{a}$ where a and b are constafits
(2)
a) Draw a suitable strfanght line graph

b) i) From the graph determine the values of the constant a and b.
ii) Determine the value of p when $q=4.5$
23. A bus left Mombasa and travelled toward Matehakos at an average speed of $60 \mathrm{~km} / \mathrm{h}$. After $21 / 2$ hrs, a car left Mombasa and travelled alongithe same road at an average speed of $100 \mathrm{~km} / \mathrm{h}$. If the distance between Mombasa and Machako's is 500km, determine:
a) i) The distance of the cous from Machakos when the car took off.
ii) The distance the car travelled to catch up with the bus.
b) Immediately the car caught up with the bus, the car stopped for 25 minutes Find the new average speed at which the car travelled in order to reach Machakos at the same time as the bus.
24. a) A curve whole gradient function in $\frac{d \partial^{2} y^{\circ}}{5^{\circ}}=x^{2}+x-6$ passes through point $\mathrm{A}(6,59)$ Find its equation.
b) i)
ii) Sketch the curve.
(2mks)

