		COL	
NAME	• • • • • • • • • • • • • • • • • • • •	Ś	
SCHOOL		SIGN	
	×.>>	DATE	•••••
	Creek csepas		
121/1	eet		
MATHEMATICS	×.		
PAPER 1	www.		
JULY/AUGUST 2012	×		

121/1**MATHEMATICS** PAPER 1 JULY/AUGUST 2012 TIME 2¹/₂ HOURS

KWANZA DISTRICT JOINT EVALUATION TEST 2012

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO THE CANDIDATES

(a) cee Write your name and the index number in the spaces provided above.

- (b) Sign and write the date of examination in the spaces provided.
- The paper contains **TWO** sections: Section I and II. (c)
- (d) Answer ALL the questions in section I and FIVE questions in section II in the spaces provided below each question.
- All answer and working must be written on the question paper in the spaces provided below each (e) question.
- (f) Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
- Marks may be given for correct working even if the answer is wrong. (g)
- Non-programmable silent electronic calculators and KNEC mathematical tables may be used, (h) except where stated otherwise.

FOR EXAMINERS USE ONLY.

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	20	21	22	23	24	TOTAL

GRAND

TOTAL

This paper consists of 16 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing

ANSWER ALL THE QUESTIONS IN THIS SECTION.

Use tables of reciprocals only to find the value of

	pers.con	
	SECTION I 50 MARKS	
	ANSWER ALL THE QUESTIONS IN THIS SECTION.	
1.	Evaluate without using mathematical tables	
	Evaluate without using mathematical tables $\frac{1.9 \times 0.032}{20 \times 0.0038}$	(3mks)
	20×0.0038	(onno)
	J ^{16¹}	
	$\frac{1.9 \times 0.032}{20 \times 0.0038}$ $\frac{1.9 \times 0.0038}{1.000}$	
	× Q ^{as}	
	\$ Pos	
	t _{cer}	
etee		
NO ^r 2	Use tables of reciprocals only to find the value of	
A OF	5 14	
Ŷ	$\frac{5}{0.0829} - \frac{14}{0.581}$	(3mks)

You are given that $\cos \theta = \frac{8}{10}$. Without using mathematical tables express in fraction form the 3.

value of

- Sin θ (a)
- $\tan(90-\theta)$ (b) (3mks)

An open right circular cone has radius of 3 cm and aperpendicular height of 12 cm .Calculate the ra. κeπto κeπto treekce visit mon.treekce treekce to be past pagets visit more. treekce to be to b 4. surface area of the cone.(Take π to be 3.14) (3mks)

Nyongesa spends a total of sh.970 on buying 3 text books and 5 pens. If he had bought 2 text books and 5 pens he would have saved sh.90. Find the cost of one text book. (3mks)

(b) Calculate the deceleration of the car.

(2mks)

- Three towns are situated in such a way that town B is 40km due south of town A and town C is 30 7. km due East of town B.
 - Draw a sketch diagram stowing the position of town A.B and C. (a) (1mk)

rs.com

From your sketch, calculate: (b) FOT NOTE Free KCSE DOT Distance AC (1mk)

T o the nearest degree the bearing of town A from town C. (ii) (2mks)

8. A Kenyan tourist left Germany for Kenya through Switzerland. While in Switzerland he bought a watch worth 52 Deutche marts. Find the value of the watch in;

(a)	Swiss Franca	(2mks)
(u)	D WIDD I Tulleu	(2mms)

(b) Kenya shillings using the exchange rates below, 1 swiss Franc = 1.28 DM and 1 Swiss Franc = 45.21 Kenya shillings 9. Find the inequalities that defines the region \hat{R} shown in the figure below

10. Form the quadratic equation whose roots are $x = -\frac{5}{3}$ and x = 1 (2mks)

(4mks)

ABCD is a circle quadrilateral and AB is a diameter. Angle ADC= 117^{0} . Giving reasons for each 11. step, calculate the value of angle BAC. (3mks)

The circle below whose area is 18.05cm² circumscribes a triangle ABC where AB=6.3cm, BC =5.7cm and AC =4.8cm. Find the area of the shaded part. (3mks)

(3mks)

For word & ree A A form IV maths teacher originally worked out the mean mark of her 30 students to be 41. After the correction of the test, she added some marks of the test, she added some marks to Njoki, Chelimo and Nafula in the ratio 2:3:4, if the new mean mark for the class is 42.5 determine how many more marks Nafula was added than Chelimo. (3mks)

The volumes of two similar solid cylinders are 4752 cm³ and 1408 cm³. If the area of the curved 15. surface of the smaller cylinder is 352 cm^2 , find the area of the curved surface of the larger cylinder (2mks)

Pers.com The line which joins the point A (3, K) and B (-2, 5) is parallel to the line whose equation is (3mks)

SECTION II (50 MARKS) Attempt only FIVE questions in this section

- A newly built classroom measuring 6m long 4.5m wide and 3.2 m high is to be cemented on the floor and all inside walls. The classroom has one door measuring 1.85m by 80cm by 80cm and four windows measuring 1.5m by 70cm each.Cementing materials cost 500 per square meter while labour costs 20% of the cost of cementing materials. Calculate:
 - (a) To one decimal place, the total surface are to be cemented

(b) The cost of cementing materials (2mks)

(5mks)

		c ^{on}	
(c)	The to	otal cost of cementing the classroom	(3mks)
(C)	rine u	btal cost of cementing the classroom $x^{1}e^{4x}$. $x^{1}e^{4x}$. $x^{2}+2xy+y^{2}$	(3111KS)
18. If x	x² +∞ ²=29 a	and $x+y=3$ mine the values of	
e free ter	(i)	$x^2+2xy+y^2$	(2mks)
#Or Not	(ii)	2xy	(2mks)
	(iii)	x ² -2xy+y ²	(2mks)

same road at an average speed of 90km/h. the distance between the two towns is 540km.

The time of day when the two vehicles met

(b) How far from town A they met

Determine

(a)

(2mks)

(4mks)

.com

3

(4mks)

LCSE Past papers visit www.freekceet

	LCST PAST S	<i>6</i> 74						
20 0	The table b		ws the na	mes of 20	0 persons	s measure	d to the n	earest kg
.e Š	Mass	40-49	50-59	60-69	70-79	80-89	90-99	100-109
HOT NOTE FT.C.	(kg)							
\$ ⁰	No. of	9	27	70	50	26	12	6
	persons							

(a) Calculate the mean mass

(b) Calculate the median mass (5mks)

(5mks)

21. (a) Complete the table below by filling in the blank spaces

X^0	0	30	60	90	e ⁵²⁰	150	180	210	240	270	300	330	360
Cos x	1.00		0.5	and f.		-0.87		-0.87					
2 cos	2.00	1.93	,×.	6		0.52			-1.00				-2.00
1⁄2 X			Jiter										

Using the scale km to represent 300 on the horizontal axis and 4cm represent 1 unit on the vertical axis, that we on the grid provided the graphs of y=cos x and y=2 cos ½ x (4mks) k_{c} to the provided the graphs of y=cos x and y=2 cos ½ x (4mks) k_{c} to the provided the graphs of y=cos x and y=2 cos ½ x (4mks)

(b) Find the period and amplitude of $y=2\cos \frac{1}{2}x$

(2mks)

(c) Describe the transformation that maps the graph of y=cos x on the graph of y= $2 \cos \frac{1}{2} x$ (2mks)

22. The figure below represent a rectangle \mathbb{RQRS} inscribed in a circle centre O and radius 17cm. PQ =16cm.

s.con

(2mks)

(b) The angle ROS

(4mks)

(c) The area of the shaded region

(4mks)

			pers.com
23.	(a)	(i)	Complete the table below for the function $Y=x^3+x^2-2x$

(2mks)

		X.C.						
	\sim	ve3	-2	-1	0	1	2	2.5
	-2x www	6	4	2	0	-2	-4	-5
	X ²	9	4	1	0	1	4	6.25
	X ³	-27	-8	-1	0	1	8	15.625
of the second se	$Y = x^3 + x^2 - 2x$							
255× 1					•			
دي ^{بو} (ii)	On the grid pr		draw tł	ne gra	ph of	y=x ³ +	$-x^2-2x$	for the valu
e e	interval- $3 \le x$.	.52.5						
(⁴ ⁴)								
For more Free KCSE Past (ii)								
\$° ⁺								

On the grid provided, draw the graph of $y=x^3+x^2-2x$ for the values of x in the interval- $3 \le x \le 2.5$ (4mks)

(b) Find the coordinates of two points on the curve other than (0,0) at which x-coordinate and y-coordinate are equal. (3mks)

- 24. Use a ruler ad a compass only for all constructions in this section.
 - (a) Construct a triangle XYZ in which XY =6cm YZ =5cm and angle XYZ=120⁰. (2mks)

(b) $e^{a_{e}t}$ Measure XZ and angle YXZ. k_{c} k_{c}

(4mks)

(c) Construct the perpendicular bisector of XZ and let it meet XZ at M (1mk)

(d) Locate a point W on the opposite side of XZ as Y and that XW =ZW and YW=9cm and hence complete triangle XZW. (3mks)