		con			
Name				Index No	
School	×	Pape		Date	
Candidate's signatu	ree ^{eee}				
8	steet				
232/1	wan. Ere				
PHYSICS	J'AJ'				
PAPER 1					

232/1PHYSICS PAPER 1 JULY / AUGUST 2012 TIME: 2 HOURS

LOITOKITOK DISTRICT JOINT EVALUATION TEST - 2012 FOT NOTE FILE

Kenya Certificate of Secondary Education (K C.S.E.)

INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided above. 1.
- 2. This paper consists of two sections: A and B
- Answer all the questions both in section A and B in the spaces provided below each question 3.
- All workings must be clearly shown; marks may be awarded for correct steps even if the answers 4. are wrong.
- Mathematical tables and silent electronic calculators may be used. 5.
- Take $g = 10 \text{m/s}^2$ 6.

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
Α	1 - 14	25	
В	15	12	
	16	11	
	17	10	
	18	10	
	19	12	
TOTAL		80	

For Examiners' Use Only

This paper consists of 12 Printed pages.

Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

© 2012 – Loitokitok District Academic Committee

SECTION A(25 MARKS)

The diagram below shows a portion of a micrometer screw gauge used to measure the diameter of a metal pipe. The reading on the gauge when the jaws were fully closed without the pipe was 0.012 cm

2.285 LPapers. com

(2 marks)

Figure 2 below shows a soap film formed on a metal ring and a loop of thread inside it.

(3 marks)

Physics 232/1 Turn Over

3. The system in figure three below is inn equilibrium.

e.cor

Figure 4

	State what was observed at the junction between the two bars	after sometimes.	(1 mark)
6.	Explain why steel is selected for use to reinforce a concrete be	eam.	(1 mark)
@ 2012	Loitokitok District Acadomia Committee	Dhusias 222/1	Turn Quar

© 2012 – Loitokitok District Academic Committee

com Figure 5 below shows a uniform bar length 10 m pivoted near one end. The bar is kept in 7. equilibrium by a spring balance as show

Given that the reading of the spring is 0.6 N, determine the reaction force at the pivot. (3 marks)

Water flows in a horizontal pipe of varying diameter as shown below. If the cross sectional area of 8. A is 4.5 cm^2 and that of B is 5.4 cm^2 . The rate at which water flows at A is 66m/s calculate the speed of water through B. (3 marks)

9. Three identical springs each of spring constant 10 N/m and weigh 0.5 N are used to support a load as shown in figure 7 below.

con

10. Figure 8 below shows a part of a tape pulled through a ticker by a trolley. If the frequency of the timer is 50Hz, calculate the acceleration of the trolley. (3 marks)

© 2012 – Loitokitok District Academic Committee

Physics 232/1 Turn Over

- 12. Explain why the speed of a body in circular protion is constant but velocity is not. (1 mark)
- 13. A glass block is suspended from spring balance and held inside a beaker without touching the beaker. Water is added gradually into the beaker. Figure 9 below shows the variation of up thrust on the block with depth water in the beaker.

.....

		COL	
		iii) Explain briefly how the Kinetic Theory accounts for	or the results obtained in the
		above experiment.	(2 marks)
		exc ⁶	
	d)	A mass of a gas has a vole of 200 cm^3 at room temperature	$e ext{ of } -74^{\circ}c ext{ and } a ext{ pressure of } 1$
		atmosphere, What is its volume at a pressure of 3 atmosphere	ere and a temperature of 27 ⁰ c?
		oast papers	(3 marks)
For word of	e ^k cs ^{fr} a)	Define velocity ratio.	(1 mark)
for Nore	 b)	i) In an experiment carried out to determine the efficient	ency of a pulley system it was
	0)	found that when an effort of 80N was used to lift 30 Determine the effort applied to lift 80N when the effort 80N when the 80N when the 80N when 80N when the 80N when 80N whe	00N the efficiency was 75%.

ii)	Give a reason why efficiency varies with load.				

© 2012 – Loitokitok District Academic Committee

system was 64%

(3 marks)

Figure 11 shows hydraulic press system using a lever negligible mass. On the ride of the c) small piston pivoted at point P. Afforce of 50N is applied at R.

con

17.

b) Figure 12 below shows a buoy B of volume 40 litres and mass 10Kg. It is held in position in sea water of density 1.04 gcm³/₃ by a light cable fixed to the bottom so that ³/₄ f the volume is below the surface of the sea water

c) Figure 13 shows a bulb hydrometer.

				COR	
			ii) E	xplain why the hydrometer has a weighted bulb and narrow stem?	(1 mark)
	18.	a)	Differen	tiate between speed and velocity.	(1 mark)
		••••		winn Er	
		b)	A body of	of mass 200g is tied to a string and whirled in a vertical circle of radius 1	
			speed of	4 m/s. Calculate:	
FOLNO			i) ç ^{aQ} T	he angular velocity.	(2 marks)
		SEP	∂*´		
	.e ^e	¢C.	ii) T	The tension in the string at the highest and lowest position.	(2 marks)
ہ	e e				
NOF NO	*				
Æ,		c)		of wood of mass 4Kg is suspended from a tree by a long light string. A	bullet of
		- /		Dg is fired with a velocity of 100m/s and embeds itself in the target.	
			i) A	at what velocity does the target begin to move after impact.	(2 marks)
			::) 1	Low high does the target mayo?	() montra)
			ii) H	Iow high does the target move?	(2 marks)
			iii) S	tate the energy changes on the impact up to the highest point.	(1 mark)
	19.	a)	Define s	pecific latent heat of vapourization.	(1 mark)
		•••••			
		•••••			

© 2012 – Loitokitok District Academic Committee

b) In an experiment to determine the specific latent heat of vapourization of a liquid using an electrical method, the amount of heat required to vapourize a given mass, M, of a liquid were recorded as shown in the table.

		were recorded		in the table.					
		$Q(J)x10^3$	3.0	4.00	5.0	6.0	6.0	7.0	8.0
		M(Kg)x10 ⁻³		6.4	8.8	11.2	11.2	13.6	16.0
		i) On the	e graph prov	vided plot a	graph of Q	(y-axis) aga	inst M.	(.	5 marks)
			×*						
			2						
	- C								· · · · · · · · · · ·
	0								
e e	2								
- A									
r Nore Fre									
NOT									
S.									
Y									
									+

ii) From the graph, determine the specific heat of vapourization of the liquid.(2 marks)

iii)	Suggest a reason why the graph does not pass through the origin.	(1 mark)
iv)	Write a possible equation for this graph.	(1 mark)
Calcu	late the amount of heat required to melt 30g of ice at 0^0 c.(Latent heat o	f fusion of ice

is $3.34 \times 10^5 \text{JKg}^{-1}$). Give your answer correct to two decimal places. (2 marks)

c)