NAME: \qquad
SCHOOL \qquad

INDEX NO:

\qquad
\qquad

DATE:

\qquad

232/1
PHYSICS

PAPER 1

JULY / AUGUST- 2012
TIME: 2 HOURS

MANGA DISTRICT JOINT EVALUATION EXAM- 2012
 Kenya Certificate of Secondary Education (K.C.S.E)

232/1
PHYSICS
PAPER 1
JULY / AUGUST- 2012
TIME: 2 HOURS

INSTRUCTIONS TO THE CANDIDATES:

1. Write your Name and Index No in spaces provided above
2. Sign and write the date of examination in the spaces provided above
3. This paper consists of two sections A and B
4. Answer ALL the questions in section A and B in the space provided.
5. All working MUST be clearly shown where necessary.
6. Mathematical tables and silent electronic calculators may be used.

Take: acceleration due to gravity $\mathbf{g}=10 \mathrm{~ms}^{-2}$ or $10 \mathrm{~N} / \mathrm{kg}$
Density of water $=1000 \mathrm{kgm}^{-3}$
Latent heat of fusion of ice $=3.34 \times 10^{4} \mathrm{Jkg}^{-1}$
Specific heat capacity of water $=4.2 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$
For Examiners' Use Only

SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
\mathbf{A}	$1-12$	25	
\mathbf{B}	13	11	
	14	13	
	15	09	
	16	12	
	17	10	
Total Score			

This paper consists of 12 Printed pages.
Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

SECTION A (25 Marks)

Answer all the questions in this section in the $\$$ paces provided.

1. A ball bearing on mass $1.5 \times 10-3 \mathrm{~kg}$ is held between the anvil and spindle of a micrometer screw gauge as shown in the figure 1 bedow.

The reading between completely closed jaws without any object between them is 0.10 mm . What is the diameter of the ball bearing?
2. Find the density of the ball bearing in question 1 above correct to 3 significant figures.
3. A fixed mass of a gas a volume of $281.5 \mathrm{~cm}^{3}$ at a temperature of $27^{\circ} \mathrm{C}$. At what temperature will it have a volume of $350 \mathrm{~cm}^{3}$? (Assume pressure is constant)
4. Hot coffee in a cup is allowed to cool for 10 dilinutes. State TWO factors that will determine the final temperature of the tea.
\qquad
\qquad
\qquad
\qquad
5. Figure 2 below shorws the levels attained by two liquids L_{1} and L_{2} after the temperature was lowered. The liguids were initially at the same level as shown by the dotted line.

(a) Mark on the diagram the levels of the liquid when the temperature is raised above the initial value.
(b) Give a reason for your answer in (a) above
6. A liquid flows through a pipe of varying cross-sectional area. If the liquid enters one end of the pipe of cross-sectional area $5 \times 10^{-3} \mathrm{~m}^{2}$ at 0.3^{-1} and flows into a different end of a different crosssectional area at this 1 ms -1.Determine the cross-sectional area at this end.
7. A box of mass 300 kg is pulled along an incliffed plane by a force of $2 \times 10^{3} \mathrm{~N}$ as shown below.

Determine the efficiency of the inclined plane.
8. The figure below shows a bucket filled with water of mass 5 kg tied to a string 3.0 m long being rotated in a vertical circle with a constant velocity of $5 \mathrm{~ms}^{-1}$

Calculate the maximum tension on the string
9. State two differences between boiling and evéporation.

10. State two ways in whichthe stability of an object can be decreased.
\qquad
\qquad
\qquad

11. Stâle the similarity between speed and velocity.
\qquad
\qquad
\qquad
12. The figure below shows a smooth card placed on the open end of a cup. A coin is placed on the card. When the card is suddenly pulled away horizontally, the coin drops into the cup.

Explain this observation

SECTION B (55 Marks)

Answer all the questions in this section in thespaces provided.
13. (a) Define impulse and state its $\xi^{\gamma^{9}}$ units.

\qquad
\qquad
\qquad
(b) A police m man fires a bullet of mass 20 g from a gun of mass 2 kg , if the bullet emerges at a velocity of $300 \mathrm{~ms}^{-1}$ from the muzzle, calculate the force the gun exerts on the policeman.
(c) The diagram below shows a spherical object falling through a fluid.

On the same diagram, show two other forces which act on the object.
(d) A graph of velocity against time for the object plotted for various fluids is shown below.

(i) Name the part labeled D
(ii) Arrange the fluids A, B and C in order of decreasing density.
(iii) State one factor that affects the resultant force of the body above as it falls through the fluid.
14. (a) The diagram below represents a motor car hydraulic braking system.

(i) State the property of the liquid used as brake fluid.
\qquad
\qquad
(ii) Explain briefly how the systegr works.
(iii) An effort of 200 N is applied on the brake pedal. Calkulate:
(1) The force F_{1} applied to the master piston.
(II) The pressure on the fluid.
(III) The force, F_{2}, exerted on the salve piston.
(b) The figure below shows a rubber sucker.

\qquad
(c) The figure belows shows a water manometer used to measure the pressure of a cooking gas.

By how much is pressure of the gas above the atmospheric pressure?
(b) A smoke cell contains a mixture of trapped air and smoke. The cell is brightly lit and viewed through a microscope. State and explain what is observed.
\qquad
\qquad
\qquad
\qquad
(c) A beaker is filled completely with water. A spoon full of common salt is added slowly. The salt dissolves and the water does not overflow.
(i) Why is salt added slowly.
\qquad
\qquad
\qquad
 on the walls of a long glass tube as shown.

(i) What conclusion can be made from the result of this experiment?
(ii) How does the size and mass of a gas affect its rate of diffusion?
(iii) The experiment is performed at a lower temperature. Explain how the time taken to form the white deposit would be affected.
\qquad
\qquad
\qquad
\qquad
16. (a) State archimedes' principle.
\qquad
\qquad
(b) The figure below shows a cork floating on water and held to the bottom of the container by a thin thread.

(i) Other than the upthrust force, elwhich other 2 forces is acting on the cork. $\quad(2 \mathrm{mks}) ~_{\text {(i) }}$
\qquad
(ii) Describe fow the forces mentioned in (i) above changes when water is added into the asontainer until it fills up.
(c) An object floating on water has a weight of 20N. Determine the volume of water it displaces.
(d) Why does a person swimming in fresh water taking a deep breath float without exhaling?
\qquad
\qquad
\qquad
\qquad
(e) Explain why a hydrometer has a weighted base.
\qquad
\qquad
\qquad
\qquad
17. (a) Define specific latent heat of fusion of a substance and state its SI unit.
\qquad
\qquad
\qquad
\qquad
(b) Water of mass $2 \times 10^{-3} \mathrm{~kg}$ at a temperafture of $80^{\circ} \mathrm{C}$ is put in a well lagged copper calorimeter of mass $2 \times 10^{-2} \mathrm{~kg}$. Apiece of ice at $0^{\circ} \mathrm{C}$ and mass $2 \times 10^{-3} \mathrm{~kg}$ is placed in the calorimeter and the mixture sefrred gently until all the ice melts. The final temperature of the mixture is then measitited to be $54^{\circ} \mathrm{C}$

Determine:
(i) Thîe heat absorbed by the melting ice at $0^{\circ} \mathrm{C}$.
(ii) The heat absorbed by the melted ice (water) to raise the temperature to $54^{0} \mathrm{C}$.
(iii) State any two reasons why the heats given in (i) and (ii) above are inaccurate.
\qquad
\qquad
\qquad
\qquad
(c) Calculate the heat lost by the warm water and the calorimeter (specific heat capacity of the calorimeter $=400 \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$).

