	c ^O .						
NAME	······································	INDEX NO					
SCHOOL		. SIGN					
	eekcsepast	DATE					
	eetct						
121/2	∱y ⁻						
MATHEMATICS ALT. A							
PAPER 2							

~

121/2**MATHEMATICS ALT. A** PAPER 2 JULY/AUGUST 2012 TIME 2¹/₂ HOURS

MARAKWET WEST DISTRICT JOINT EVALUATION TEST-**2012(MAWESSE)**

Kenya National Examination Council (K.C.S.E)

121/2 MATHEMATICS ALT. A PAPER 2 JULY/AUGUST 2012 TIME 2 ¹/₂ HOURS

INSTRUCTIONS TO THE CANDIDATES

- Write your name and the index number in the spaces provided above. (a)
- Sign and write the date of examination in the spaces provided. (b)
- This paper consists of TWO sections: Section I and II. (c)
- Answer ALL the questions in section I and only FIVE questions from section II. (d)
- All answers and working must be written on the question paper in the spaces provided below each (e) question.
- Show all the steps in your calculations, giving your answers at each stage in the spaces below (f) each question.
- Marks may be given for correct working even if the answer is wrong. (g)
- Non-programmable silent electronic calculators and KNEC mathematical tables may be used, (h) except where stated otherwise.

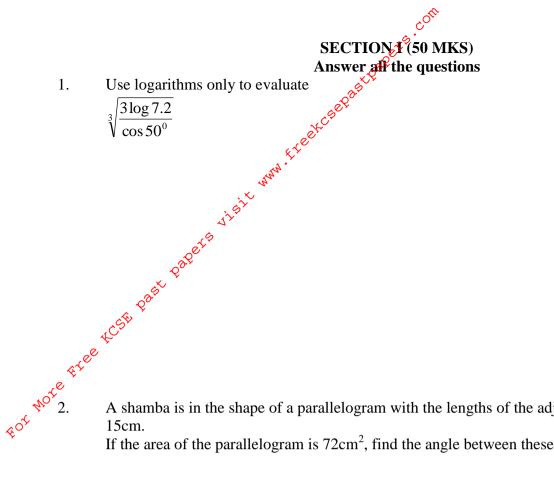
FOR EXAMINERS USE ONLY.

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

~		-						
17	18	19	20	21	22	23	24	TOTAL


GRAND TOTAL

This paper consists of 16 printed pages.

Candidates should check the question paper to ensure that all

pages are printed as indicated and no questions are missing.

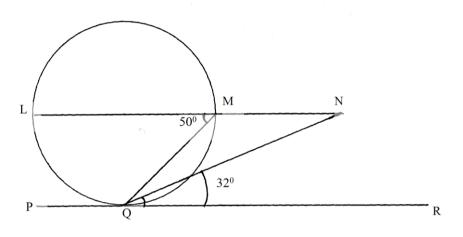
© 2012 Marakwet West District Academic Committee Mathematics 121/2

A shamba is in the shape of a parallelogram with the lengths of the adjacent sides being 12cm and

If the area of the parallelogram is 72 cm^2 , find the angle between these two sides. (3mks)

Solve for t given that 28 cm(3t)-100 for $90^0 \le t \le 360^0$ 3.

(3mks)


(4mks)

Papers visit www.freekcsepastpapers.com Make x the subject of the formula 4.

$$P = 2t\sqrt{\frac{x}{3x-4}}$$

(3mks)

In the figure below LM is a diameter of the circle and LMN is a straight line. The line PQR is a tangent to the circle at Q.Angle NQR= 32° and angle QML = 50° . FOT NOTE Free

Calculate

5.

angle MQN (a)

(2mks)

angle QNM (b)

(1mk)

6. Expand
$$\left(1+\frac{3}{x}\right)^5$$
 upto the fifth term (2mks)

Hence use your expansion to evaluate (2.5)500 3dp

(2mks)

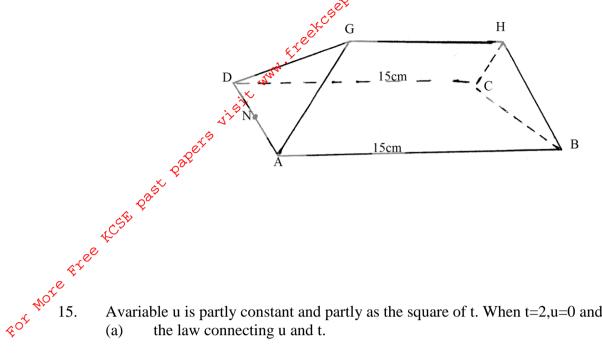
7. Find the equation of the normal to the curve $y=2x^2+3x+4$ at x=2 (3mks)

(JulkS) 8. 8. 8. Find the percentage error in calculating the volume of a sphere radius 4.9cm. (3mks) Roc. More Free

9. Mama Jeru deposited sh.1850 for 18 months at an interest rate of 16% p.a compounded half yearly.
How much interest did she pay at the end of the of the period? (3mks)

10. Find the equation of the locus of all points equidistant from P and Q where P(6,9) and Q(0,-5) (3mks)

Simplify by rationaling the denominator leaving your answer in surd form.


(3mks)

 $\frac{1}{\sqrt{2}-1} - \frac{\sqrt{2}}{\sqrt{2}+1}$ $\frac{1}{\sqrt{2}-1} - \frac{\sqrt{2}}{\sqrt{2}-1}$ $\frac{1}{\sqrt{2}-1} - \frac{\sqrt{2}}{\sqrt{2}-1}$ $\frac{1}{\sqrt{2}-1} - \frac{\sqrt{2}-1} - \frac{\sqrt{2}-1} - \frac{\sqrt{2}-1} - \frac{\sqrt{2}-1} - \frac$

13. Find the area of the region enclosed by the curve y=x-6 and the line x=-1 and x-2. (3mks)

In the fig.ABCDGH is a rectangular based wedge with AD=6cm and CD=15cm. The midpoint of 14. AD is N and DG =GA=BH=HC =9cm.If GH =7cm, calculate the angle between planes ADG and the base ABCD. (3mks)

con

Avariable u is partly constant and partly as the square of t. When t=2,u=0 and when t=1,u=3.Find the law connecting u and t. (3mks)

the value of u when $t = \frac{1}{4}$ (b)

(1mk)

An equilateral triangle of sides 9cm is completely enclosed in a circle of radius rcm. Find the least 16. value of r. (2mks)

SECTION II (50 MARKS) Answer only five questions

- 17. A cattle dip is 150cm wide and 12m long. The depth of the water increases uniformly from a shallow end of 60cm to a maximum of 6m.
- (a) Find the volume of water that can be held by the full dip in litres
 - (b) If the dip is drained by a pipe of radius 15cm at the rate of 6m/l, how long will it take to drain a full dip? (5mks)

(5mks)

com R1 denotes reflection along line x=14.R2 denotes reflection along line x=2.T denote translation 18. vector $\left(\frac{-1}{2}\right)$

- (2mks) (3mks)
- A triangle ABC has vertices A (1,4), B (3,4) and C (3,6)
 (a) Show the image A¹B¹C¹¹ under R¹
 (b) Find and draw A¹¹B¹¹C¹¹ the image of A¹B¹C¹ under R².
 (c) Find and draw A⁴¹B¹¹C¹¹ the image of A¹¹B¹¹C¹¹ under T.
 (d) Describe a single transformation which maps the object onto the final image. (2mks) Je For More Free KCSB past papers in

(3mks)

- 19. The probability that a pupil goes to school by a boda-boda is $\frac{2}{3}$ and by a matatu is ¹/₄. If he uses a boda-boda the probability that he is late to school is $\frac{2}{5}$ and if he uses a matatu the probability of being late is $\frac{3}{10}$. If he use other means of transport the probability of being late is $\frac{3}{20}$.
 - (a) Draw a tree diagram to represent this information. (3mks)

 $e^{o^{2}}$ (b) Find the probability that he will be late for school. (3mks)

(c) Find the probability that he will be late for school if he does not use a matatu. (2mks)

(d) What is the probability that the will not be late to school (2mks)

Fill the table below and use it to draw the graph of y=2cos $(\theta - 30^{\circ})$ for $0^{\circ} \le \theta \le 360^{\circ}$. 20. (a)

				~Q	0.1							
θ	0^0 (30° 60°	90 ⁰	120 ⁰ e 0 0	150^{0}	180^{0}	210^{0}	240^{0}	270^{0}	300^{0}	330^{0}	360 ⁰
θ - 30 ⁰		300		er	120^{0}			210^{0}		270^{0}		330^{0}
$\cos(\theta - 30^{\circ})$		1	et	0	-0.5		-1			0		
$y=2\cos(\theta-30)$						-		-1.732		0	1	
(b) Sta	te the	amplitud	and per	riod of t	he grap	h					(2mks)	
(c) Us	e your	graph to	solve the	e equation	on cos	$(\theta - 30^{\circ})$)=0.25				(2mks)	
\$ Past	\$											
ree t CSt												
(c) Us												

com

- A plane flies from airport $x(60^{\circ}S,30^{\circ}E)$ due North to airport $Y.(30^{\circ}N,30^{\circ}E)$ at 180knots. 21. After 20 minutes stop over for fueling at X, the plane flew due wet to an airport $Z(30^{0}N, 15^{0}E)$ at the same speed.
 - Calculate the total distance covered by the plane in nautical miles (4mks)

com

.otal die .otal die .treet.com .treet.c Calculate the total time taken to complete the journey from X through Y to Z. (4mks)

> (b) From a certain latitude a plane is first visible over the north pole. The plane is flying at a height of 800km above the North Pole, calculate the latitude angle (2mks) (R=6370km)

23. Without using a et square or a protractor

(b)

FOT NOTE Free

It using a et square or a protractor $e^{t^{2}}$. Construct a horizontal line AB, 6cm long and triangle ABC such that $\langle ABX=30^{0}$ and line (a) papers visit www.freekcset AB = 10cm.(3mks)

Past Construct a perpendicular from a to meet BC produced at N. Measure CN.

(3mks)

Construct triangle A^IBC such that the area of triangleA¹BC is three quarters of triangle (c) ABC and A^1 is on the same side of BC as A and lies on AB.measure A^1B . (4mks) 23. The marks obtained by 50 candidates in an examination were recorded as shown

Marks	0-9	10-19	20-29	30-39	40-49	50-59	60-69		
No of	4	10	1200	9	8	5	2		
candidates			N ^C ^S						


Ŕ

Draw a cumulative frequency curve hence use your graph to estimate

(a)	the median $\sqrt{n^{n^{n}}}$	(1mk)
(b)	the quartile deviation	(2mks)
(c)	the percentage of candidate failing if 25 marks is the pass mark	(2mks)
(d)	the range of marks scored by the middle 60% of he candidates	(2mks)
(d)	Past Papet	
~~ ^e e		
not wore *		
∜ ĭ		

© 2012 Marakwet West District Academic Committee Mathematics 121/2

com Claire earns sh.15,900 p.m and gets a tax relief of sh.7,200 p.a. How much should she pay 24. (a) as income tax p.m if taxation rates are as shown below.

sh.720 per month calculate his P.A.Y.E

(6mks)

© 2012 Marakwet West District Academic Committee Mathematics 121/2

For More Free KCSB past pagets visit www.treekceepastpagets.com

© 2012 Marakwet West District Academic Committee Mathematics 121/2

For More Free KCSB past pagets visit www.treekceepastpagets.com