|                                                            | · ·                                                              |                  |
|------------------------------------------------------------|------------------------------------------------------------------|------------------|
| Name                                                       |                                                                  | Index No         |
| School                                                     | · · · · · · · · · · · · · · · · · · ·                            | Candidate's sign |
|                                                            | e vieik www. freekceepatro                                       | Date             |
| 231/1<br>BIOLOGY<br>Paper 1<br>July/August 2012<br>2 Hours | s Jisik mund                                                     |                  |
| MBITA-                                                     | SUBA DISTRICTS JOINT EVAL<br>Lenya Certificate of Secondary Educ |                  |
| 231/1<br>SBIOLOGY<br>Paper 1<br>July/August 2012           |                                                                  |                  |
| 2 Hours                                                    |                                                                  |                  |

## INSTRUCTIONS TO CANDIDATES.

1. Answer all the questions in the space provided

For examiners use only:

| Questions | Max score | Candidates |
|-----------|-----------|------------|
| 1-27      | 80        |            |

|                     | e the function of the following cell organishe                  |      |
|---------------------|-----------------------------------------------------------------|------|
| (a)                 | Ribosome                                                        | (3mk |
| •••••               | Ribosome                                                        |      |
| (b)                 | Smooth endoplasmic reticulum                                    |      |
|                     |                                                                 |      |
| (c)                 | Golgi apparatus                                                 |      |
|                     |                                                                 |      |
|                     |                                                                 |      |
| . List              | any distinguishing features of the class arachnida              | (2mk |
| \$ <sup>-5</sup> ee |                                                                 |      |
| (a)                 | (i) Name the hormone responsible for moulting in insects        | (1mk |
| ••••                | ······································                          |      |
|                     | (ii) Where is the hormone in a(i) above secreted                |      |
| ••••                |                                                                 |      |
| (b)                 | State the role of juvenile hormone in the development of insect | (1mk |
|                     |                                                                 |      |
| . State             | e three functions of the mammalian blood other than transport   | (3mk |
|                     |                                                                 |      |
|                     |                                                                 |      |
| . Belo              | ow is a stage in cell division                                  |      |
| Γ                   |                                                                 |      |
|                     | 6 50                                                            |      |
|                     | 8                                                               |      |
| -                   |                                                                 |      |
|                     |                                                                 |      |
|                     |                                                                 |      |
|                     |                                                                 |      |
| (2)                 | Identify the store                                              | (11. |
| (a)                 | Identify the stage                                              | (1mk |

|       | (b)   | Give reasons for your answer                                                              | (2mks)                                  |
|-------|-------|-------------------------------------------------------------------------------------------|-----------------------------------------|
|       |       | strial wastes may contain metallic pollutants. State how such pollutants may i            |                                         |
| 6.    | Indus | strial wastes may contain metallic pollutants. State how such pollutants may i            |                                         |
|       |       | accumulate in the human body if the wastes were dumped into rivers.                       | (3mks)                                  |
|       |       |                                                                                           |                                         |
|       |       | QaQette                                                                                   |                                         |
| 7.    | Nam   | exarts of the brain which control                                                         | • • • • • • • • • • • • • • • • • • • • |
|       | (a)E  | Involuntary activities e.g breathing                                                      | (1mk)                                   |
| e & L | (b)   | Control voluntary body movement                                                           | (1mk)                                   |
| 8.    |       | ng a strenuous exercise, the chemical process represented by the equation beluman muscles |                                         |
|       |       | $C_6H_{12}O_6$ $\longrightarrow$ $2CH_3CH(OH)COOH+150KJ$                                  |                                         |
|       |       | (Glucose) (substance x) (energy)                                                          |                                         |
|       | (a)   | What is the name of this process                                                          | (1mk)                                   |
|       | (b)   | Name the substance X                                                                      | (1mk)                                   |
|       | (c)   | What happens to the muscle if x accumulates to critical level                             | (1mks)                                  |
| 9.    | (a)   | What is meant by (a) organic evolution                                                    | (1mk)                                   |
|       | (b)   | Adaptive radiation                                                                        |                                         |
|       | ••••• |                                                                                           |                                         |
| 10.   | Ident | rify the type of mutation represented by the following pairs of words                     |                                         |
|       | (i)   | Shirt instead of skirt                                                                    | (1mk)                                   |
|       | (ii)  | Hopping instead of shopping                                                               | (1mk)                                   |
|       |       |                                                                                           |                                         |

|       | (iii) Eat instead of tea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1mk)                            |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 11.   | State the function of the following inventouction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| 11.   | State the function of the following in reproduction  (a) Umbilical cord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3mks)                           |
|       | Ete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|       | with the second |                                  |
|       | (b) Aerosome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |
|       | QQQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|       | (c) Follical stimulating hormone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| 0     | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| 12. ° | (a) Explain why a person discharges urine more frequently w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hen environment temperatures     |
| NO2   | are low than when they are high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2mks)                           |
|       | (b) Name the nitrogenous wastes excreted by a fresh water fix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sh (1mks)                        |
| 13.   | Explain why individuals with smaller sizes requires more energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ner ka of body weight than those |
| 13.   | with large sizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3mks)                           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| 14.   | List three types of muscles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3mks)                           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| 15.   | Describe the path taken by carbon (iv) oxide released from the tis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | esues of a cockroach into the    |
| 13.   | atmosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3mks)                           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |

- (a) Small intestines to the liver.....
- (b) Heart to the kidney.....
- (c) Heart to the lungs....
- 17. The number and distribution of stomata on three different leaves are shown in the table below

| Leaf Nur |                 | ber of stomata  |
|----------|-----------------|-----------------|
| pers     | Upper epidermis | Lower epidermis |
| A 💸      | 300             | 0               |
| B        | 150             | 200             |
| (G)      | 02              | 13              |

(a) Suggest the possible habitat of the plant from which the leaves were obtained

Leaves Habitat

A .....

В .....

(b) State one modification found in the stomata of leaf C (1mk)

.....

18.



The set-up above was prepared by form one students and left for 1 hour They made the following observations

|                   | At the start   | After one hour |
|-------------------|----------------|----------------|
| In visking tubing | White solution | Blue-black     |
| In beaker         | brown          | brown          |

|                  |         | (a)         | Identify the physiological process being investigated                               | (Imk)  |
|------------------|---------|-------------|-------------------------------------------------------------------------------------|--------|
|                  |         | (b)         | Explain the observation made                                                        | (3mks) |
|                  |         |             | Fold study a studion come coross a plant whose leaves quickly folded when tow       |        |
|                  | 19.     | maı         | held study a student came across a plant whose leaves quickly folded when touc      |        |
|                  |         | the n (a)   | ame as Mimosa Pudica  Identify the mistake he made when writing the scientific name | (2mks) |
|                  |         | (byr)       | Name the type of response                                                           | (1mk)  |
| ~vo <sub>3</sub> | e & Leg | (c)         | State the possible advantage of this response to the plant.                         | (1mk)  |
| 4,               | 20.     | • • • • • • | three characteristics features of an efficient respiratory surface                  | (3mks) |
|                  |         |             |                                                                                     |        |
|                  | 21.     | State       | three environmental factors that affect the rate of stomatal transpiration          | (3mks) |
|                  | 22      |             |                                                                                     |        |
|                  | 22.     | (a)         | What is the importance of Adenosine triphosphate (ATP) in mammals                   | (1mk)  |
|                  |         | (b)<br>     | State two functions of respiratory Quotient (RQ)                                    | (2mks) |
|                  | 23.     | Give        | two functions of the exoskeleton in insects                                         | (2mks) |
|                  | 24.     | State       | four ways of breaking seed dormancy                                                 |        |
|                  |         |             |                                                                                     |        |
|                  |         |             |                                                                                     |        |

|                                 |          | c <sup>ov</sup>                                                         |        |
|---------------------------------|----------|-------------------------------------------------------------------------|--------|
| 25.                             | Other    | than sexual intercourse name the other ways by which HIV/AIDS is spread | (3mks) |
|                                 |          |                                                                         |        |
|                                 |          |                                                                         |        |
|                                 |          |                                                                         |        |
| 26.                             | The di   | agram below represents a bone in a mammal                               |        |
| z Ş <sup>ç</sup> e <sup>e</sup> | z KESK P | aget pagets vieit which                                                 |        |
|                                 | (a)      | Identify the bone                                                       | (1mk)  |
|                                 | (b)      | Name the bone that articulate with the above bone at part A             | (1mk)  |
|                                 | (c)      | Name the joint formed at the part labeled B                             | (3mks) |
|                                 |          |                                                                         |        |
|                                 | •••••    |                                                                         |        |
| 27.                             | An an    | imal has the following dental formula,                                  |        |
|                                 | 1=0/2    | C=0/2 pm 3/3 $m=2/3$                                                    |        |
|                                 | (a)      | Suggest the type of diet for this animal                                | (1mk)  |
|                                 | (b)      | Give a reason for your answer in (a) above                              | (1mk)  |
|                                 |          | How many teeth does the animal have in total                            | (1mk)  |

ROL Mote Free KCSt Dast Dagets visit und free Reserves as con