	coth					
Name	• • • • • • • • • • • • • • • • • • • •	£\$.	•••••	Index No		
School		axigaiQ		Date		
Candidate's signature		Ç ^{&}				
	way Erecher					
232/1 PHYSICS	rieik maa					
PAPER 1	7					
JULY / AUGUST 201 TIME: 2 HOURS	2					

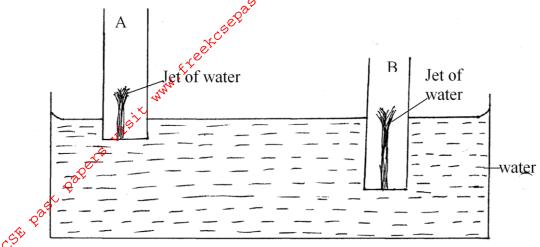
MBITA-SUBA DISTRICTS JOINT EXAMINATION - 2012

Kenya Certificate of Secondary Education - K.C.S.E

INSTRUCTIONS TO THE CANDIDATES:

- 1. Write your name and index number in the spaces provided above.
- 2. Sign and write the date of examination in the spaces provided.
- 3. This paper consists of two sections: A and B.
- 4. Answer ALL the questions in section and B in the spaces.
- 5. Non- programmable electronic calculators and KNEC tables may be used.
- 6. Where applicable take : g = ION/Kg; Density of water $1000kg/cm^3$

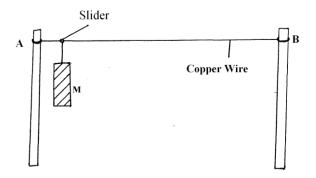
For Examiners' Use Only


SECTION	QUESTION	MAXIMUM	CANDIDATE'S
		SCORE	SCORE
A	1 - 13	25	
В	14	10	
	15	12	
	16	12	
	17	10	
	18	11	
TOTAL		80	

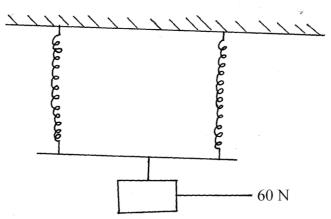
This paper consists of 12 Printed pages.

Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

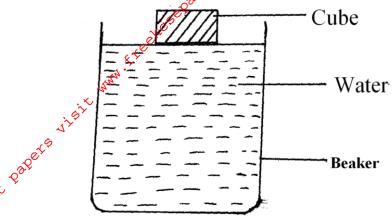
SECTION A 25 MARKS


1.	In the spaces below, draw the scale of a vernier calipers showing a reading of 0.74 cm	
	e e e e e e e e e e e e e e e e e e e	
	and .	
2.	The figure below shows three wooden blocks resting on a flat surface. (They are made material).	e of the same
e ^{şte}	material). (a) (b) (c) (c) (d) (e) (e) (e) (e) (e) (e) (e	
	i) Arrange them starting with the most stable	(1mk)
	ii) State the factor that have considered in 2(i) when arranging them.	(1mk)
3.	The diagram shows a velocity time graph for a vehicle moving at 2mls and begins to a time $t = O$ seconds	accelerate at
	Graph	
	What is the vehicle's acceleration at time, t = 5 seconds.	(2mks)
4.	State any two conditions that must be satisfied for a body to float in a fluid.	(2mks)

Explain why the jet of water in the tin B is larger than in A (2mks)

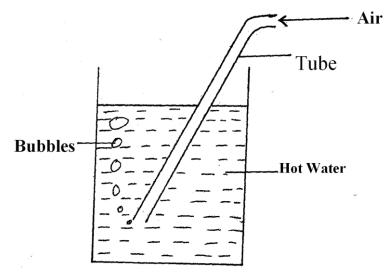

.....

The diagram below shows a horizontal copper wire tightly fixed. A mass M is suspended from the wire using a slider at a point closer to A than B.



The copper wire is then heated for sometime, State and explain what is likely to be observed on the position of the mass. (2mks)

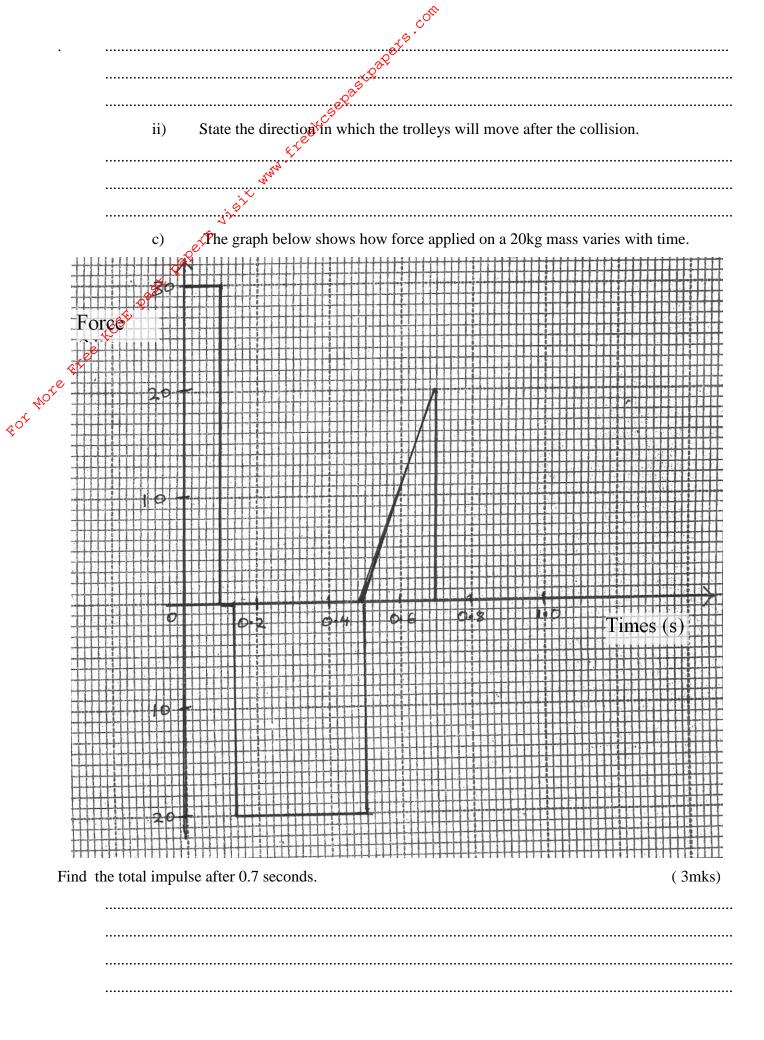
7. Two identical springs, whose spring constant is 6.0N/ cm, are used to support a load of 60N as shown below.



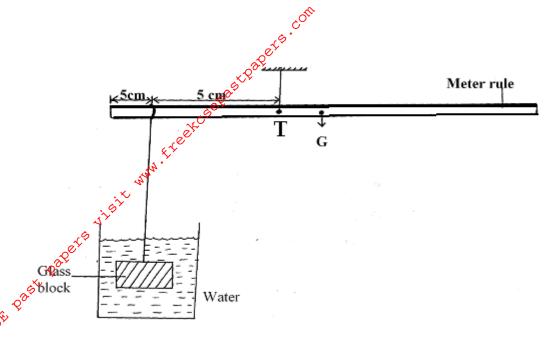
8. The figure below shows a cube of a certain wood whose density is the same as that of water. The cube is held on the surface of water. The cube is held on the surface of water in along beaker.

> .	and explain what happens to the cube after it is released.	(2mks)
a)	State one factor that determines the value of critical speed of a given body under	rgoing
	uniform circular motion	(1mk)
•••••		

10. The figure shows a gas being bubbled through hot water.

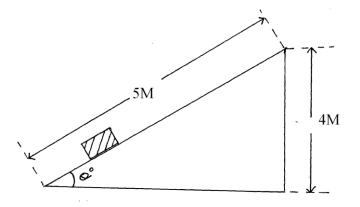


Explain why the bubbles increased in size as it rises to the water surface.	(2mks)


11.	A st	one weight 2N in air and 1.2 N when totally immersed in water. Calculate the vo	lume of the
	stone	e.	(2mks)
	•••••		
	•••••		
	•••••	St.	
		w ^a	
12.	Expl	lain why in trying to move a rigid wall, a person is said to be doing no work.	(1mk)
	•••••		
	•••••		
13.	Thê	reading of mercury barometer is 70.0 cm. What is the pressure at the place in N/r	
		hereury is $1.36 \times 10^4 \text{ Kg/m}^3$)	(2mks)
\$ ye			, , ,
r Mote Ete			
ç			
		SECTION B (55MKS)	
		Answer All questions in this section	
14.	a)	Define centripetal acceleration.	(1mk)
	•••••		
	1	A	
	b)	An object of mass 400g revolves uniformly on a horizontal frictionless surface	2. It 1S
		attached by a cord 20 cm long to a fixed point P.	
		Rotation	
		• Rotation	
		Object	
	i)	Mark and label on the diagram the direction of centripetal force F and linear v	elocity V.
		(2mk)	
	•••••		,

	ii)	The object makes a revolutions per second. Determine the linear velocity of the	e object.				
		a training and the second seco	(2mks)				
	•••••						
		a second					
	•••••	k _{ire} .					
	c)	A stone is tied to a light string of length 0.5 m. If the stone has a mass with a ur					
		angular velocity of 6 revolutions per second, determine.					
		i) Phe period	(2mks)				
	•••••		••••••				
	(C)(V)	δ.					
more free	, Por	ii) The tension of the string when the stone is at the bottom of the swing.					
vote,	•••••		••••••				
d,	•••••		••••••				
	•••••		••••••				
15.	a)	State and difference between evaporation and vapourisation.	(1mk)				
	•••••		••••••				
	•••••		••••••				
	b)	The graph below shows the boiling process of water, Use it to answer the ques	tions that				
		follow.					

	(i)	(i) State the room temperature from the graph.				
	•••••					
	•••••					
		State what is happening along BC in the graph				
	ii)	State what is happening along BC in the graph	(1mk)			
		, ¢ ^{;×}	•••••••			
		S. S				
c)	50g	of stream at 100^{0} C was passed into cold water at 20^{0} C. The temperature of the mi	xture was			
		. Faking specific heat capacity of water as 4200 J Kg ⁻¹ K ⁻¹ and specific latent hea				
	vapo	purisation of water as 2260 KJKg ⁻¹ and ignoring heat losses, determine.				
\$ ⁷ 6	z i)	Quantity of heat lost by the steam.	(3mks)			
.e	•••••					
Y						
	•••••					
	•••••					
	•••••		•••••			
	ii)	Quantity of heat transferred from the condensed steam to the cold water.	(3mks)			
	•••••					
	•••••		•••••			
	•••••		••••••			
	•••••		•••••••			
	iii)	Mass of the cold water	(3mks)			
		Wass of the cold water	(SIIIKS)			
16.	a)	State any one differences between inelastic collision and elastic collision.	(1mk)			
			•••••			
	b)	Two trolleys of masses 2.0 kg and 1.5 kg travelling towards each other at 0.20	mls and			
		0.35mls respectively collide head on the trolleys combine on collision:-				
		i) Calculate their combined velocity.	(3mks)			


d)	State C	'harle's law	agerts	(1mk)
			2	
	e)	100 m	t 27°c and normal atmospheric pre- gas if it is heated to 54° c at the sa	
	•••••			
	•••••	∵		
	, cy ^s	?		
-0	₽ C			
more 17.	a)	State the law of floatation		(1mk)
,	••••••			
	••••••			
	b)	Explain why hydrometer has a v	wide bulb with air in it.	(2mks)
	c)	Alog of wood of mass 300kg flo	oats on water, the density of wood	is 750 kg/ms. What is
			of average weight 400N that can	
		making it wholly immersed.		(3mks)
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			
	d)		100g is kept in equilibrium by sus	

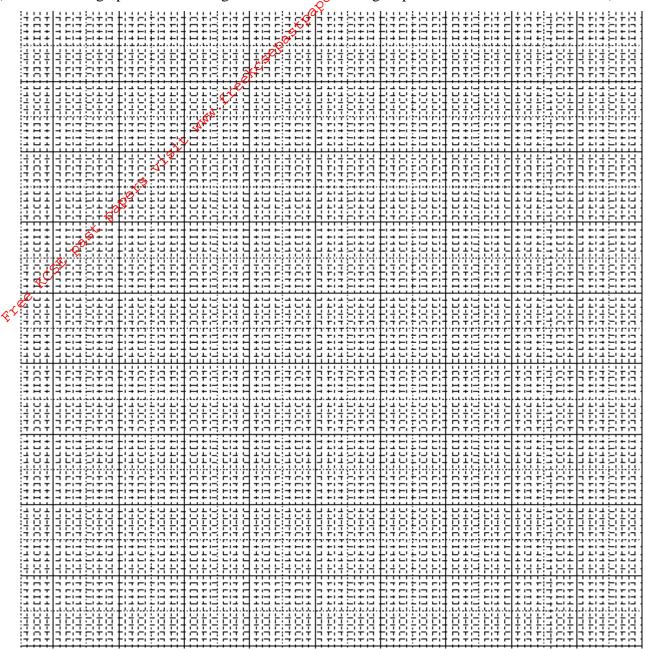
The volume of the glass block is 0.0005m³ point G is the centre of gravity of the meter rule and T is the turning point.

ĺ	What is the distance from G to the turning point T.				
•••••					
ii)	Determine the weight of the glass block	(3mks)			

18. a) The figure below shows an inclined plane of length 5m.

Find the velocity ratio of the inclined plane.	(2mks)

b) Sketch the possible arrangement of the pulleys with a velocity ratio of S.


(2mks)

			Page Cour					
			······································					
			,2 ² 2 ³ 2					
		a Qas						
••••••		40°						
•••••	•••••	~~^ _© ,	•••••					
•••••		4. ,	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	
			•••••					
			•••••					
	Ó							
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
c) _Q (	The table below sho	ows the readin	ngs for various	masses hu	ng from	a spring l	balance.	
ACSE D								
	Mass (kg)	0	0.02	0.04	0.06	0.08	0.10	
	Reading (mm)	120	131	130`1/10	161	171		_

Mass (kg)	0	0.02	0.04	0.06	0.08	0.10
Reading (mm)	120	131	139`149	161	171	
Force (N)						
Extension ( mm)						

Complete the table i)

(2mks)



From the graph, determine the extension when a mass of 0.045 kg is hung from the spring (1mk)