PANGANI GIRLS SCHOOL
 PRE-MOCK EXAMINATION
 MATHEMATICS DEPARTMENT
 FORM 4 - MARCH 2013
 PAPER 1
 TIME : $2 \frac{1}{2}$ hours

NAME
CLASS

INDEX NUMBER \qquad

Instructions to candidates

1) Write your name, index , and class number in the space provided above.
2) The paper consists of two sections: section I and section II.
3) Answer all the questions in section I and anytive in section II
4) Section I has sixteen questions and section two has eight questions
5) All answers and working must be written (hen question paper in the spaces provided below each question.
6) Show all the steps in your calculations, giving your answers at each stage in the spaces below each question $?$
7) KNEC Mathematical table and silent non-programmable calculators may be used.

For examiner's use only c^{5}

Sectionti

$17 \mathbf{Q}^{18}$	19	20	21	22	23	24	total

This paper consist of $\mathbf{1 5}$ printed copies candidates should check the question paper to ensure that all pages are printed as indicated and no question is missing.

SECTION 1 (50 marks)

Answer all the questions in this section in the spaces provided
1)

Without using logarithms or a calculator evaluate 2marks

$$
\frac{0.015+0.45 \div 1.5}{4.9 \times 0.2+0.07}
$$

2) A room whose measurements are 4.50 n ${ }^{\text {Kand }} 5.25 \mathrm{~m}$ is to be carpeted by square tiles. Find the minimum number of square tiles needed to completely cover the room.
 3marks

$$
\frac{\frac{3}{4}+1 \frac{5}{7} \div \frac{4}{7} \text { of } 2 \frac{1}{3}}{\left(\frac{2}{5}-\frac{5}{8}\right) \times \frac{2}{3}}
$$

4) The distance between estate A and B is 9 Km . Atieno and Wambui left town A for B. Atieno cycled at $2 \mathrm{Km} / \mathrm{h}$ faster than Wambui arrived at B one hour twelve minutes earlier than Wambui .Calculate there speeds,

5) Use four figure reciprocal angsquare root tables only to find the value of P if

3marks

$$
\frac{1}{p^{2}}=\frac{2}{0.18}+e^{5} \frac{17}{187}
$$

6) What is the density of an alloy made by mixing 51 g of metal A with a density of $17 \mathrm{~g} / \mathrm{cm}^{3}$ with 15 g of metal B with a density of $3 \mathrm{~g} / \mathrm{cm}^{3}$
7) A man left $\frac{1}{5}$ of his estate to his wife and $\frac{2}{3}$ of the remainder to be divided equally to each of his two sons. The rest was to be shared in the same ratio among his six cousins. If each cousin got sh 60000 how much money did the son get?

8) In the figure below A is the image of triangle B under a certain rotation find the center and angle of rotation
9) Use mathematical tables to evaluate
10) Find the number of sides for a regular polygon given that the value of exterior angle is 2 less than the number of sides.

3marks
11) From \propto viewing tower 15 m above the ground the angle of depression of an object ondthe ground is 30° and the angle of elevation of an aircraft vertically above the abject is 42° find the height of the aircraft above the object.
12)Simplify by factorization

$$
\frac{4 b(a-b)-(6 a+2 b)(b-a)}{2 a^{2}-2 b^{2}}
$$

13) \quad A line L_{1} passes through the points $\left.-4,8\right)$ and (2, 0). Another line L_{2} is perpendicular to L_{1} and meets it at the ixintercept. Find by calculation the equation of L_{2}

3marks

14)Find the integral values of x which satisfy the inequality : $8 \geq 4-3 x>-3$
15)Solve the equation for x without using tables or a calculator :

$$
\left(\frac{9}{5}\right)^{x} \times 3^{2-2 x}-1^{x}=1124
$$

16) The figure below (NOT DRAWN TO SCALE) shows a pet a prism where. All the measurements are in centimeters. Sketch the prish showing all the lines and vertices

SECTION II (50 marks)

Answer only five questions in this section in the spaces provided
17)A bus left town P at 11.45 a.m and travelled towards town Q at an average speed of $60 \mathrm{~km} / \mathrm{h}$. A van left town Q at $1.15 \mathrm{p} . \mathrm{m}$ on the same day and travelled towards town P along the same road at an average speed of $90 \mathrm{~km} / \mathrm{h}$. They met at 4.15 em Determine,
I. the distance between the two towns
II. The distance from town P they met
III. The distance of the bus fromitown Q when the van reached town P.

3marks

IV. Atter reaching their destination they both rested for one hour before starting the return journey. At what time did they met the second time.

4marks
18) Kiriku is standing 16 km south of point P. She then walks on a straight path on a bearing of 030° Calculate
I. a. How far will she will have walked before she is equidistant from her starting point and P

2marks
b. The bearing of P from that point?
II.

1marks
a.

How far will she will have walked before she is at the shortest distance from P

2marks

b. The bearing of P from that point

1mark

How
far she will be from point P when she has walked 30 km on the same straight path
19)The histogram shows marks obtained by students in an examination

I. From the histogram make a fequency distribution table if the frequency of bar A is 15

3marks
II. \&etermine the modal class

1mark

IV. Draw a frequency polygon to represent the above data
20) The transformation T_{1} and T_{2} are represented by the matrix
$T_{1}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \quad$ and $T_{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
I. A single transformation T can replace transformation T_{1} followed by T_{8}. Write down the matrix for T
II. The points $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ arecthe images of $\mathrm{A}(3,3), \mathrm{B}(1.1), \mathrm{C}(0,4)$ under T. Write dow h the co-ordinates of $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$.

3marks
III. On the axis plot triangle $A B C$ and $A_{2} B_{2} C_{2}$.

2mark
IV. Describe the transformation T_{1} and T_{2}
21) $A(1,2), B(5,6), C(5,-2)$ are vertices of a triangle. F is the midpoint of $B C$ and $A E=3 E C . A$ point G divides the line $A B$ in the ratio $3:-1$.

I. Calculate the co-ordinates of

G
II. $e^{e^{2} \text { Find the column vector }}$

1mark

1mark
b. Hence show that E, F and G are collinear

2mark
III. Write down the ratio of EG: GF
22) The figure below shows a a water container in the form of a frustum whose base radius is 3.5 cm and top radius is 21 cm . When the height of water in the container is two fifth up the container the volume of water in the container is 3 $003 \mathrm{~cm}^{3}$.
(take $\pi=\frac{22}{7}$)

Calculate
I. The value of H

7marks
II.

The
23)The figure below shows two circles in contact with one another of radius 4 cm and 3 cm respectively. $A B C D$ is a trapezium where $A B$ is parallel to $C D . X$ and Y are centers of the two circles. Angle $\mathrm{AXB}=120^{\circ}$ and $\mathrm{CYD}=96^{\circ}$
I. Calculate the length of

a. AB
b. DC

1mark
II. Calculate the

a. perpendigular height of the trapezium

3marks

b. area of the trapezium

1mark
III. Find the area of the shaded part
24) The diagram below shows the sketch of the curve $y=-x^{2}+6$ and another curve y_{2} whose gradient function is $\frac{d y}{d x}=$
I. Find the equation of the curve y_{2}

2marks
II. Calculate the co-ordinates of $A j^{x}$

2marks

1mark
Hence writedown the values of a and b
III. zifd the area enclosed by the curve y_{z} the line $x=a$, line $x=b$ and the y

IV. Find the area of the shaded region

3marks

