PANGANI GIRLS SCHOOL

PR - MOCKS 2013

Physics 232/1
Paper 1
Time: 2 hours

SECTION A - 25MARKS

1. A uniform rod has a weight of 60 N . With a force of 30 N at one end, it balances at a point 2 m from the same end. Determine the length of the rod. (2mks)
2. A spiral spring of a spring constant $50 \mathrm{~N} / \mathrm{M}$ produces an extension of 100 mm when a certain force is applied to it. Find the magnitude of the force applied
3. Given that the diameter of an oil drop is 2.0 mm and the diameter of the circular patch of the same drop on water is 20 cm , calcythte the thickness of the oil molecule.
4. Two identical beakers A and B containing equal volumes equal volumes of water are placedeon a bench. The water in A is cold while in B it is warm, identical pieces of potassium per manganate are placed gently at the bottom of each beaker inside the water. In which beaker will the potassium permanganate sp@ad faster? Explain.
(3mks)

5. State two consequences of surface Tension.
6. In the figure below the liquid has streamlines motion. Calculate the diameter of the larger part of the pipe if the radius of the narrow part is 4 cm .

7. The diagram below shows a uniform meterfule balanced by two forces A and B, Force B is 10 N and the weight of the rule is 6 N . The lower pulley is movable and weight less but the upper is fixed land friction less. Calculate the force A.

8. Thermal expansion has great importance in our daily life activity state any one use of thermal expansion in solids.
9. Other than temperature difference state any other three factors that affect the rate of heat flow in a material.
10. The figure below shows a velocity against time graph for a moving bod?

Velocity (m/s)

a. Describe the motion of fere body during the 10 seconds.
(2mks)
b. Determind the displacement of the body in 10 seconds.

SECTION B - 55 MARKS

12.a. Define the term efficiency of a machine.
b. A drum of mass 150 kg is rolled up a plane inclined at 25° to the horizontal. The force F applied is 500 N and the distance moved by the drum along the plane is 6 m . Determine:

i. Work done by the effort.
(2mks)
(2mks)
(2mks)
iii. Efficiency of the inclined plane.
$<O^{r}$
ii. Work done to raise the ofrum.

c.i. Draw an inclined plane with a velocity ration 2.
ii. If the inclined plane above is used to lift a mass of 0.6 tonnes to a truck when an effort of 1000 N is applied. Determine the mechanical advantage of the system.
(2mks)
13.a. A gun was aimed horizontally to hit the target at $\mathrm{Y}, 0.8 \mathrm{~m}$ below $\%$.

i. Explain why the Gun bullet hit Y arifd not at X ?
ii. Calculate the velocity mifith which the bullet left the gun.

A stone is dropped from the top of a building and takes 2 seconds to reach the sand on the ground level. Calculate.
i. The velocity with which it strikes the ground.
ii. The height of the building.
iii. The average deceleration of the stone after the stone hit the sand if it penetrates the sand to the depth of 2.5 cm .
(2mks)
c. A body of mass 5 kg is placed on the horizontal ground Calculate the force required to pull the body with uniform velocity if the ebefficient of friction is 0.5 .
(2mks)
14.a. In an experiment to deternine the specific latent heat of vaporization of water, steam at $100^{\circ} \mathrm{C}$ was passed into water contained in a well lagged copper calorimeter. The following measurements were made.
Mass of calorimetgh $=60 \mathrm{~g}$
Initial mass of water $=90 \mathrm{~g}$
Initial temperature of water $=\quad 10^{\circ} \mathrm{C}$
Final massof calorimeter + water + condensed steam $=153 \mathrm{~g}$
Final temperature of the mixture $=40^{\circ} \mathrm{C}$
(specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and specific heat capacity of Copper $=400 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{k}^{-1}$)
a.i. Determine the mass of the condensed steam.
ii. Determine the heat gained by the calorimeter and the water.
b. Given that Lv is the specific latent heat of vapouration of steam.
i. Write an expression for the heat given out by steam.
(1mk)

ii. Determine the value of Lv.

c. Define the following terms.
i. Heat capacity
(2mks)
ii. Latent heat of fusion.

d. An immerston heater rating 1500 W is placed in a metal block of mass 200 g and specifictheat capacity $900 \mathrm{Jkg}-1 \mathrm{k}-1$. If the temperature of the metal changed from. $80^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$.
i. Ga@ulated the time taken to archieve this temperature change. (3mks)

ii. Name two sources of error in this experiment.
15.a. State Charles law for an ideal gas.
b. The set up shows an arrangement to determine the relationship between temperature and pressure of a gas at constant volume.

i. Qescribe how the measurements are obtained in the experiment.
(3mks)
ii. Explain how the results from the experiment can be used to determine the
c. A bicycle tyre is pumped to a pressure of 3.2×10^{5} paat $25^{\circ} \mathrm{C}$. After a racé the pressure is found to be $3.8 \times 10^{5} \mathrm{pa}$.
Assuming the volume of the tyre did not change, what is the temperature of the Air in the tyre?
d. Air is trapped inside a glass tubefly a thread of mercury 240 mm long. When the tube is held horizontally the lgogth of the air column is 240 mm .

Assuming thatthe atmospheric pressure is 750 mmHg and the temperature is constant; Ealculate the length of the air column when the tube is vertical with Open enddown.
(3mks)

b. Name two factors which affect pressure in liquids.
c. The system shown below is used in Hydraulic brakes.

