INDEX NO. SIGNATURE

233/1 CHEMISTRY (THEORY) PAPER 1 JULY/AUGUST 2014 TIME: 2 HOURS.

MBOONI EAST SUB - COUNTY FORM FOUR JOINT EVALUATION TEST, 2014

Kenya Certificate of Secondary Education.

233/1 CHEMISTRY (THEORY) PAPER 1

TIME: 2 HOURS.

INSTRUCTIONS TO CANDIDATES.

- a) Write your NAME and INDEX NUMBER in the space provided above
- b) Sign and write the date of examination in the spaces provided above
- c) Answer ALL the questions in the spaces provided
- d) ALL working must be clearly shown where necessary.
- e) Mathematical tables and silent electronic calculators may be used.
- f) This paper consists of 11 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

FOR EXAMINER'S USE ONLY.

Question	Maximum score	Candidate's score
1 > 27	80	
Total score	80	

© 2014, Mbooni East sub - county Joint Evaluation Test
233/1
Chemistry
(Theory) Paper 1

Turn over

Mbooni East 2014 1 | P a g e

2. The diagram below shows the arrangement used in the laboratory during preparation of oxygen gas.

3.

(1) Name the substance labeled W.	(1 mark)
(ii) Write an equation showing the preparation of oxygen in the above arrangement.	(1 mark)
(iii) Name two solids which may be heated to obtain oxygen gas.	(1 mark)
50cm ³ of Carbon (IV) Oxide diffuses through a porous plate in 15 seconds. Calculate the	time taken b

75cm ³ of Nitrogen (IV) Oxide to diffuse through the same plate under similar conditions.	
(C = 12, 0 = 16, N = 14)	(3 marks)

4. A student fetched water from a river in a limestone area. He used it for washing and realized that it did not lather easily.

(1) Name the two ions that prevent lathering.			
	• • • • • •	••••	• • •

Mbooni East 2014 2 | P a g e

			nemistry raper i Question
	(ii) Given that the structure of soap is C	// _Y , y	
		ns how the above ions prevent lathering.	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ç	
	4.5°		
	Willy.		
	×		
5.	The table below shows solutions and the	heir PH values.	
	Solution	PH value	
	P	2.0	
	R gas	7.0	
	Q A		
	Scoto	14.0	
•	<b>y</b>	vith zinc hydroxide. Explain your answer	(2 marks)
5 ^Ç			• • • • • • • • • • • • • • • • • • • •
6.	Using an energy cycle diagram, calcul-	ate the enthalpy change of formation of carbon d	isulphide
0.	Osing an energy cycle diagram, calcula	are the chinarpy change of formation of carbon u	(3 marks)
	$S_{(s)} + O_{2(g)} \longrightarrow SO_{2(g)}  \Delta H = -294$	kJmol ⁻¹	(= 1, 1,
	$CS_{2(g)} + 3O_{2(g)} \longrightarrow CO_{2(g)} + 2SO_{2(g)}$	$\Delta H = -1072 \text{ kJmol}^{-1}$	
	$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}  \Delta H = -393$	kJmol ⁻¹	
7.		ass of 69.39. Given that the element has two i	•
		relative abundance of each of the isotopes.	(3 marks)
			• • • • • • • • • • • • • • • • • • • •
8.		a gas jar full of Sulphur (IV) Oxide gas.	
	(i) State two observations made in the	gas jar.	(2 marks)
	(ii) Write an equation for the reaction t	that took place.	(1 mark)
	•		, , , ,

Mbooni East 2014 3 | P a g e

Chemistry Paper 1 Questions The table below shows the tests carried out in sample of water and the results obtained. **Sample Results Observations** Addition of Sodium Hydroxide White precipitate which dissolves in excess A dropwise until in excess B Addition of excess Ammonia White precipitate solution C Addition of cilute Nitric (V) acid White precipitate followed by Barium Chloride (i) Identify the anion present in the water. (1 mark) (ii) Write the ionic equation for the reaction in C (1 mark) ..... ..... (iii) Write the formula of the complex ion in A. 10. Study the table below and answer the questions that follow. Element Atomic radii (nm) Ionic radii (nm) **Flourine** 0.071 0.136 **Chlorine** 0.099 0.181 **Bromine** 0.114 0.195 (a) Explain why

(i) Atomic radius increases from fluorine to bromine (2 marks) (ii) The ionic radius is larger than the atomic radius. (2 marks)

Mbooni East 2014 4 | P a g e



13. Solid P when heated gives a black powder Q and a colourless gas that forms a white precipitate in lime water. When dilute Sulphuric (VI) acid is added to the powder Q, a pale blue solution is formed.

Mbooni East 2014 5 | P a g e

	(a) Give the chemical formula of  (i) Solid P	(1 Mark)
	(ii) Solid Q	(1 Mark)
	Ji ^b	
	(b) Write an equation for the reaction leading to the formation of the pale blue solution.	(1 Mark)
	Q of	
	The figure below is for dissolving Ammonia gas in water. Study it and answer the questions	s that follow.
or of	Inverted funnel Water	
	(a) What property of Ammonia gas makes this method of choice?	(1 Mark)
	(b) Give two importance of the funnel	(2 Marks)
	A student set-up the experiment below to collect gas K. The glass wool was heated before zinc powder.  Glass wool Soaked with water  Roiling tube	re heating the
	Boiling tube  Heat Heat  (a) Why was it necessary to heat the moist glass wool before heating the zinc powder?	(1 Mark)
	(b)What observation was made in the boiling tube.	(1 Mark)

Mbooni East 2014 6 | P a g e

	ζ.	X Pap		(1 M
		<i>~∞</i> ·		
Calcium Carbona	te is heated in a clos	ed vessel and the follow	wing equilibrium is established.	•••••
CaCO _{3(s)}	$CaO_{(s)} + Co_{2(g)}$		0 1	
•	**************************************			
State and explain	the effect on the yie	eld of CO ₂ by removing	Calcium Oxide as soon as it for	ms.
n e	Rect			(2 Ma
 Ç	, ,			
~ <del>{\}</del> }				
0.				
•			carbon and 14.3% hydrogen (C	= 12, I
(i) Determine the	e molecular formula	of B.		(2 Ma
				•••••
				/1 N/
(ii) Write the stru	ctural formula of B.			(1 Mi
(ii) Write the stru	ctural formula of B.			(1 Mi
(ii) Write the stru	ctural formula of B.			(1 Ma
(ii) Write the stru	ctural formula of B.			(1 M;
				(1 Mi
Γhe table below g	gives some propertie	s of compounds P, Q, F		(1 Mi
Γhe table below g	gives some propertie	M.P ( ⁰ C)	Conductivity in water	(1 M)
Γhe table below g  Compound  P	gives some propertie  B.P (°C)  77	M.P (°C)	Conductivity in water  Does not conduct	(1 M)
Γhe table below g  Compound  P  Q	B.P (°C) 77 74	M.P (°C) -22 -19	Does not conduct  Does not conduct	(1 Mi
Γhe table below g  Compound  P	gives some propertie  B.P (°C)  77	M.P (°C)	Conductivity in water  Does not conduct	(1 M
Γhe table below g  Compound  P  Q	B.P (°C) 77 74	M.P (°C) -22 -19	Does not conduct  Does not conduct	(1 M;

(b) Select the compound that is a liquid at room temperature. Explain your answer. (2 Marks)

Mbooni East 2014 7 | P a g e

- 19. M grammes of a radioactive isotope decayed to figrammes in 100 days. The half life of the isotope is 25 days.
  - (a) What is meant by half life? (1 Mark)
  - (b) Calculate the initial mass M of the radioactive isotope. (2 Marks)
- 20. Name the following organic compound. (1 Mark)



- (b) Draw the structure of the following
- (i) 2 Bromo 4 Chloro 3, 3 dimethylhex 1 ene (1 Mark)

(ii) 2 – Bromo – 1 – chloro – 4 methylpentane. (1 Mark)

21. A student in form four placed a thermometer in molten napthaline at 85°C and recorded the temperature and time until the napthaline solidified. From the values obtained, the figure below was drawn.



Mbooni East 2014 8 | P a g e

Mbooni East 2014 9 | P a g e

	(b) Explain why the splint was burnt the way is shown in the diagram.	(2 Marks)
	(b) Explain why the splint was burnt the way is shown in the diagram.	
25.	(a) Using electrons in the outermost energy level; draw a dot (•) and cross (x) diagram for the	e ion of
o _{re}	and compound Back and the second and	(2 Marks)
	(b) The formula of the compound formed when Aluminium and Chlorine react is $Al_2Cl_6$ . Nar of bonds that exist in the compound.	ne the types (1 Mark)
26.	(a) State Gay Lusaacs Law	(1 Mark)
		•••••
	(b) 10cm ³ of a gaseous Hydrocarbon, C ₂ Hx required 30cm ³ of oxygen for complete combusti steam and 20cm ³ of Carbon (IV) Oxide gas were produced, what is the value of x?	on. If (2marks)
		•••••

Mbooni East 2014 10 | P a g e

27. When an organic compound Y is reacted with acrieous sodium carbonate, it produces Carbon (IV) oxide. Y reacts with propanol to form a sweet smelling compound Z, whose formula is



	(i) Name and draw the structural formula of compound Y.	(1 Mark)
	oe ^{to}	
	Q ^{3Q}	
	(ii) What is the name of the group of compounds to which Z belongs?	(1 Mark)
More	, Electrical de la company de	
t Ave	(iii) In an experiment excess ethanol was warmed with acidified potassium dichromate for al minutes. State and explain the observation that was made at the end of the experiment.	•
		• • • • • • • • • • • • • • • • • • • •

Mbooni East 2014 11 | P a g e