MATHEMATICS
PAPER II
JULY/AUGUST 2014
$21 / 2$ HOURS

121/2
 121/2

\qquad
\qquad
Date \qquad

MBOONI WEST SUB - COUNTY FORM FOUR JOINT EXAMINATION 2014

Kenya Certificate of Secondary Education
MATHEMATICS

PAPER II

JULY/AUGUST 2014

2112 HOURS

INSTRUCTIONS TO CANDIDATES

1. Write your name, index number and class.
2. The paper contains two sections: Section I and II
3. Answer ALL questions in section I and ANY FIVE questions from section II.
4. All working and answers must be written on the question paper in the spaces provided below each question.
5. Marks may be awarded for correct working even if the answer is wrong.
6. Negligent and slovenly work will be penalized.
7. Non-programmable silent electronic calculators and mathematical tables are allowed for use.
8. This paper consists 16 of printed pages. Candidates should check the question paper to ensure that all the pages are printed indicated and no questions are missing.

FOR EXAMINER'S USE ONLY

SECTION 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	20	21	22	23	24	TOTAL

\square

1. Use logarithms to evaluate

$$
\sqrt[3]{\left(\frac{1.23 \times 0.0468}{\log _{6}}\right)}
$$ hence rationalize the denominator

3. A car is driven a distance of 30 km measured to the nearest Km in 20 min measured to the nearest min. Between what limit will the average speed be?
(3 Marks)
4. Make r the subject of the formula.
$S=\sqrt{\frac{r^{2}+2 x b}{n}}$

In the diagram below, BT is a tangent to the circle at $\mathrm{B} . \mathrm{AXCT}$ and BXD are straight lines. $\mathrm{AX}=6 \mathrm{~cm}$, $\mathrm{CT}=8 \mathrm{~cm}, \mathrm{BX}=4.8 \mathrm{~cm}$ and $\mathrm{XD}=5 \mathrm{~cm}$.

Find the length of BT.
(2 Marks)
6. Given that $\mathrm{X}: \mathrm{Y}=1: 2$ and $\mathrm{Z}: \mathrm{Y}=2: 3$, Find the value of
(3 Marks)
$\frac{x+y}{2 z+5 x}$
7. (a) Expand $(1-2 x)^{6}$ in ascending powers of $x a\left(\begin{array}{l}\text { p }\end{array}\right.$ to the term in x^{3}.
(b) Hence evaluate (1.02) to 4 d.p.
(2 Marks)
8. Find the inverse of the matrix $\left(\begin{array}{ll}3 & 2 \\ 5 & 4\end{array}\right)$
(4 Marks)
Hence or otherwise solve the simultaneous equations
$3 x+2 y=4$
$5 x+4 y=9$
9. A merchant blends 350 kg of tea costing Sh .84 kg with 140 kg of tea costing Sh. 105 per kg . At what price must he sell the mixture to gain 25%
(3 Marks)
10. The life expectancy in hours of 106 bulbs are shîown in the table below.

Expectancy (hrs)	$90-94$	$95-99$	$100-104$	$105-109$ e,	$110-114$	$115-119$	$120-124$	$125-129$	$130-134$	$135-139$
Frequency (f)	5	14	16							

Calculate the quantile deviationof the life expectancy
(4 Marks)
11. The equation of a circle is given as $3 x^{2}+3 y^{2}-12 x+18 y+8=0$. Find the centre and radius of this circle.
12. Quantity Q partly varies as quantity R and partly varies inversely as the square of R . Given that $\mathrm{Q}=3$ when $\mathrm{R}=1$ and $\mathrm{Q}=5$ when $\mathrm{R}=\frac{1}{2}$
(i) Find the equation connecting Q and R
(ii) Find the value of Q when $\mathrm{R}=\frac{3}{2}$
(1 Mark)
13. Find the integral values of x for which; $5 \leq 3 x+2$ and $3 x-14<-2$
(3 Marks)
14. Three soldiers Mutiso, Nzangi and Kisilu went for a shooting practice. The probability of Mutiso, Nzangi and Kisilu hitting the target are $\frac{1}{3}, \frac{1}{4}$, and $\frac{1}{2}$ respectively. The three gentlement hit the target only once, one after the other. What is the probability that the target was hit atleast once?
(2 Marks)
15. Solve for x in the equation.
$\log _{8}(x+6)-\log _{8}(x-3)=\frac{2}{3}$
16. Given that $\mathrm{OA}=\underset{\sim}{i}+2 \underset{\sim}{\mathrm{j}}-3 \underset{\sim}{\mathrm{k}}$ and $\mathrm{OB}=2 \underset{\sim}{\mathrm{i}}-\underset{\sim}{\mathrm{j}}-2 \underset{\sim}{\mathrm{k}}$

Find $|\underset{\sim}{A B}|$
(2 Marks)

SECTION II - 50 MARKS

Answer only five questions from this section

17. (a) Complete the table given below by filling the blank spaces.

X	0^{0}	15^{0}	30^{0}	$45^{0} e^{\circ}$	60^{0}	75^{0}	90^{0}	105^{0}	120^{0}	135^{0}	150^{0}	165^{0}	180^{0}
$4 \operatorname{Cos} 2 \mathrm{x}$	4.00		2.00	0^{2}	-2.00	-3.46	-4.00	-3.46	-4.00	-3.46	-2.00		4.00
$2 \operatorname{Sin}$ $(2 \mathrm{x}+30)$	1.00	1.73	2.00 x^{5}	1.73		0	-1.00	-1.73	-2.00	-1.73		0	1.00

(b) On the grid provided draw the graph of $y=4 \operatorname{Cos} 2 x$ and $y=2 \operatorname{Sin}\left(2 x+30^{\circ}\right)$ for $0^{0} \leq x 180^{\circ}$. Take the scale 1 cm før 15^{0} on the x -axis and 2 cm for 1 unit on the y-axis.

(c) (i) State the amplitude of $\mathrm{y}=4 \operatorname{Cos} 2 \mathrm{x}$
(ii) Find the period of $y=2 \operatorname{Sin}(2 x+30)^{0}$
(d) Use your graph to solve $4 \operatorname{Cos} 2 x-2 \operatorname{Sin}\left(2 x^{2}+30\right)=0$
18. A red and black dice are rolled and the events X, Y and Z are defined as follows.
$\mathrm{X}=$ The red die shows a 4
Y - The sum of the scares of the two dice is 6
Z - The black die shigws a 3
(a) Find the probabigity of event X
(b) The probability of events X and Z
(c) Which event is mutually exclusive to X
(d) Which event is indepedent of X
(e) The probability of event Y
19. The diagram given below show triangle $\mathrm{OAB}_{-} \mathrm{OA}_{\mathrm{A}}^{\mathrm{A}}=\underset{\sim}{\mathrm{a}} \mathrm{OB}=\underset{\sim}{\mathrm{b}} . \mathrm{C}$ divides OA in the ratio 2:3 and D divides OB in the ratio $3: 4$ while AD and B meet at E .

Find interm of a and b
(a) (i) OC
(ii) CB
(4 Marks)
(b) Given that $\mathrm{CE}=\mathrm{mCB}$ and $\mathrm{DE}=\mathrm{nDA}$ where m and n are scalars
(i) Write down two distinct expressions for OE
(2 Marks)
(ii) Hence find the values of m and n
(iii) Find OE interms of a and b only
20. (a) Using a ruler and pair of compasses only, côntruct triangle ABC in which $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=8.5 \mathrm{~cm}$ and angle $\mathrm{BAC}=60^{\circ}$
(b) One the same side of AB as C :
(i) Determine the locus of a point psuch that $\angle \mathrm{APB}=60^{\circ}$
(ii) Construct the locus of R such that $\mathrm{AR}>\mathrm{B} 4 \mathrm{~cm}$
(iii) Determine the region Tasuch that $\angle \mathrm{ACT} \geq \angle \mathrm{BCT}$
21. An arithmetic progression has the first term a aị̂̂ the common difference d.
(a) Write down the third, ninth and twenty $\boldsymbol{\gamma}^{0}$ fifth terms of the progression.
(b) The progression is increasing and the third, ninth and twenty-fifth terms form the first three consecutive terms of a geometric progression. If the sum of the seventh term and twice the sixth ferm of the arithmetic progression is 78 .
Calculate
(i) The first term and the common difference
(ii) The sum of the first nine terms of the arithmetic progression
(2 Marks)
22. An aircraft leaves $\mathrm{A}\left(60^{\circ} \mathrm{N}, 13^{\circ} \mathrm{W}\right)$ at 1300 houns ${ }^{\circ}$ and arrives at $\mathrm{B}\left(60^{\circ} \mathrm{N}, 47^{\circ} \mathrm{E}\right)$ at 1700 hrs (a) Calculate the average speed of the aircraft in knots
(b) ${ }_{\text {Conwn }} \mathrm{T}\left(60^{\circ} \mathrm{N}, 133^{\circ} \mathrm{N}\right)$ has a helipad. Two helicopters S and T leaves B at the same time. S moves due West to C while T moves due North to C . If the two helicopters are moving at 600 knots. Find
(i) The time taken by S to reach C
(ii) The time taken by T to reach C
(c) The local time at a town $\mathrm{D}\left(23^{0} \mathrm{~N}, 5^{0} \mathrm{~W}\right)$ is 1000 hours. What is the local time at B .
23. A firm has a fleet of vans and trucks. Each vaneann carry 9 crates and 3 cartons. Each truck can carry 4 crates and 10 cartons. The firm has to deliver not more than 36 crates and at least 30 cartons.
(a) If x vans and y trucks are available tomake the delivery. Write down inequalities to represent the above information.

(b) Use the grid proyided, to represent the inequalities in (a) above

(c) Given that the cost of using a truck is four times that of using a van, determine the number of vehicles that may give minimum cost

N2 $0^{2} 4$. (a) Sketch the graph of $y=x^{2}+5$
(2 Marks)
(b) Using the mid-ordinate rule, with six strips, estimate the area enclosed by the curve, x -axis, y - axis and the line $\mathrm{x}=3$.
(4 Marks)
(c) Find the exact area by integration
(d) Calculate the percentage error made when the two methods above are used

