INDEX NO.

232/3
PHYSICS
PAPER 3
PRACTICAL
JULY / AUGUST, 2044
TIME: $2{ }^{1} /{ }_{4}$ HOUR $\$$

MBOONWEST SUB - COUNTY FORM FOUR JOINT EXAMINATION 2014

KenvéCertificate of Secondary Education

232/3
PHYSICS
PAPER 3
PRACTICAL
TIME: $\mathbf{2}^{1 ⁄ 2} \mathbf{2}$ HOURS

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided
- Answer ALL the questions in the spaces provided in the question paper.
- You are supposed to spend the first 15 minutes of the $2 \frac{1}{4}$ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for clear record of observations made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Non-programmable silent electronic calculators and KNEC mathematical table may be used.
- This paper consists of 6 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

FOR EXAMINER'S USE ONLY

Question 1

	a	b	c	d	f	g	h	i
maxmum score	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{3}$
Candidate's scores								

Question 2

	b(i)	b(ii)	e	f	g	h
maxmum score	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{3}$
Candidate's scores						

Question 1

You are provided with the following:-

- Vernier callipers
- Micrometer screw gauge
- Masses; $10 \mathrm{~g}, 20 \mathrm{~g}, 50 \mathrm{~g}$ and $100{ }^{\circ}$
- A helical spring
- Metre rule or half metre râ̂e

Proceed as follows $e^{x^{5}}$
(a) Determine the nember of complete turns of the helical spring. $\mathrm{N}=$ \qquad (1 Mark)
(b) Measure thexternal diameter of the spring using the vernier callipers $\mathrm{D}=$ \qquad m
(c) Use the micrometer screw gauge to determine the diameter of the wire of the spring. $\mathrm{d} \vec{E}^{2}$ \qquad m
(d) Determine the value of m

$$
\mathrm{N}=\frac{0.4 D}{d m}
$$

(e) Suspend the helical spring vertically alongside the clamped half metre rule as shown in figure 1 below. Determine the length L_{0}, of the spring before loading it.

Figure 1
(f) Load the spring with a mass of 20 g and determine the new reading on the metre rule. (L) Record this in the table below.
Calculate the extension $\mathrm{e}=\mathrm{L}-\mathrm{L}_{0}$ due to the mass of 20 g and record the value in the table given below. Repeat step f for other masses and complete the table.

Mass (g)	0	10	20	30	40	50	60	70	80	90	100
Weight (N)											
Reading (L) (cm)											
Extension e (cm)											

(6 Marks)
(g) Plot a graph of weight (N) against $\frac{1}{e}\left(\mathrm{~cm}^{-1}\right)$

(h) Determine the slope (s) of the graph at a mass of 45 g
(i) Given that $\mathrm{m}=\frac{-255 T}{(S+60)^{2}}$

Determine the value of T where (S) is the slope at 45 g
(3 Marks)
2. This question consists of two parts A and B atterempt both parts.

PART A

You are provided with the following:

- 5 optical pins
- A glass block
- A plain paper
- A soft board
- 4 thumb pins

Proceed as follows:
(a) Fix the white piece of paper on softboard using the thumb pins provided. Place the glass slab on the white paper aifld draw the outline of the block on the paper. Remove the block and indicate the sides $A B C$ and x_{1} as shown. On side $B C$ determine the centres of side $B C$ using your ruler and fix pin P_{0} as shown. Looking from one side at the opposite end of the slab fix pin $\mathrm{P}_{1}, \mathrm{P}_{2}$ so that they are in with the inage I of P_{0}. On the other side locate the same image using pins P_{3} and P_{4} as shown in figure 2 . Remove the glass block and produce lines $\mathrm{P}_{1}, \mathrm{P}_{2}$ and $\mathrm{P}_{3}, \mathrm{P}_{4}$ to their points of intersection which is the eposition of the image I.

Figure 2
(b) (i) Using the half metre rule measure the lengths
$\mathrm{EP} 0=$ \qquad cm
$\mathrm{EI}=$ \qquad cm
(ii) Work out the ratio $\mathrm{n}=\frac{\overline{E P_{O}}}{E I}(2 \mathrm{~d} . \mathrm{p})$

Part B

You are provided with the following.

- A plain sheet of paper
- A soft board
- 4 optical pins
- 4 thumb pins
- A triangular prism

Proceed as follows
(c) (i) Firmly fix the plain sheet of paper on the softboard using the thumb pins and place the prism near the centre of the paper. Trace the outline of the prism using a pencil.
(ii) Remove the prism from the outline and ${ }^{\text {a }}$ abel the vertices of the outline PQ and R.

On the side QR mark a point and doâw a normal OZ at this point. Measure an angle of 200 from the normal and draw a line alof this angle as shown in figure 3.

Figure 3
(d) Repface the prism on the outline and fix pins P_{1} and P_{2} on the 20° line at a distance of 3 cm from eách other.

View the images of the pins P_{1} and P_{2} through side PR and fix other pins P_{3} and P_{4} so that all the pins appear on one line. Remove the prism and draw a line to pass through the holes made by pins P_{3} and P_{4} extend the line into the outline as shown in figure 3. Also extend the 20^{0} line so that the two lines cross each other. Determine angle θ and record in the table below.

Figure 4
(e) Repeat the procedure and complete the table below.

Angle I ${ }^{(0)}$	20	30	40	50	60	70
Angle θ						

(f) On the grid provided plot a graph of angere θ against angle i

(g) Use your graph to determine the highest value $\mathrm{H}_{\max }$ of angle $\theta \mathrm{H}_{\text {max }}=$
(h) Determine the constant R for the glass prism from the formula.

$$
\mathrm{R}=\frac{\operatorname{Cos} 40}{\operatorname{Sin}^{2}\left(16+\frac{H_{\max }}{3}\right)}
$$

