\qquad

121/2
MATHEMATICS
PAPER 2
JULY/AUGUST- 2014
TIME: $21 / 2$ HOURS

Candidate's Signature
Date:
\qquad
\qquad

MFGORI DISTRICT JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

121/2
Mathematics
Paper 2
$21 / 2$ Hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided at the top of the page.
- The paper contains two sections; section I and II.
- Answer all the questions in section I and any five questions from section II.
- All answers and working Must be written on the question paper in the spaces provided below each question.
- Non- programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.
- Mark may be given for correct working even if the answer is wrong.

For Examiners Use Only

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II

Question	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	Total

GRAND TOTAL

[^0] missing.

Section I

1. Use logarithms table to evaluate giviag your answer to 3 s.f
2. Quf average, the rate of depreciation of a water pump is 9% per annum. After three complete years $\varepsilon^{e^{2}}$ it was Kshs. 150,700.

Find its value at the start of the three year period.
3. Given that $\mathrm{b}=\frac{t}{\sqrt{h^{2}+k^{2}}}$ make h the subject of the formula.
4. Quantity y is partly constant and partly varies inversely as the square of $P . y=7.125$ when $p=16$ and $y=5.28$ when $p=25$. Find y when $P=20$
5. If $\frac{\sqrt{14}}{\sqrt{7}-\sqrt{2}}-\frac{\sqrt{14}}{\sqrt{7}+\sqrt{2}}=\frac{a \sqrt{7}}{b}$

Find the values of $a \operatorname{nd} b$, wheré a and b are rational numbers.
6. ${ }^{\text {cheffee }}$ blender mixes 6 parts of type A with 4 parts of type B. type A costs sh. 72 while type B costs sh. 66 per kg. At what price should he sell the mixture per kg in order to make 5% profit give your answer to the nearest ten cents.
7. (a) Expand $\left(x+\frac{2}{x}\right)^{4}$ upto the constant term of expression
(b) By getting a suitable for x, use your expansion in (a) above to evaluate (10.2)4
8. Given that $x=2 i+J-2 k, y=-3 i+4 j-k$, and $z=-5 i+3 j+2 k$ and $P=3 x-y+2 z$ calculate the magnitude of P correct to 3 significant figures.
9. Solve for x where $0 \mathrm{o} \leq x \leq 360 \mathrm{o}$ in the equation $\sin \left(\frac{5}{2} x-60\right)^{0}=-0.5$
10. On the figure below PQR and PT are tangents ta ${ }^{\text {the }}$ circle at Q and T respectively. Angle $\mathrm{RPT}=30^{\circ}$ and angle $\mathrm{RQS}=50^{\circ}$. giving reasons for youranswer find the size of angle PTS.

14. Draw a line $\mathrm{PQ}=7.2 \mathrm{~cm}$ and on side of the line, use a ruler and pair of compasses only to draw the locus of a point A such that $\angle \mathrm{PAQ}=60 \mathrm{o}$ and on it mark points A such that $\mathrm{PA}=\mathrm{QA} \quad(3 \mathrm{mks})$
12. In the figure below $A B$ and $C D$ intersect externally at T. Find the value of X.

13. A circle centre O has the points $P(-1,2)$ and $Q(3,2)$ as the end points of its diameter. Determine the equation of the circle.
14. Write down the three linear inequlities that define the unshaded region R shown below.

15. Evaluate $\int_{0}^{4}(x-4)(x+1) d x$
16. The below is cuboid with dimensions as hsown below

Calculate the length of AG
(3mks)
17. On the grid provided below
(a) Draw triangle ABC whose coordinates are $\mathrm{A}(8,6) \mathrm{B}(6,10)$ and $\mathrm{C}(10,12)$ and its image $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ after undergoing a reflection in the line $y^{\prime}=x$. write the coordinates of $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \quad$ (4 mks)
(b) Triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ undergoes an enlargement centre $(0,0)$ scale factor $1 / 2$ to form triangle $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ draw Triangle $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ and state f ts co-ordinates
(c) Triangle ABC is stretched witth y - axis invariant and stretch factor of 0.5 to obtain $\mathrm{A}^{\prime \prime \prime} \mathrm{B}^{\prime \prime \prime} \mathrm{C}^{\prime \prime \prime}$. draw triangle $\mathrm{A}^{\prime \prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime \prime}$.

18. One day during inspection in a certain school itowas discovered that there was a probability of $2 / 5$ that a student had shaggy hair if a student had a skaggy hair, there was probability of $1 / 2$ that he had torn uniform. But if he had properly kept hair, dhere was a probability of $1 / 4$ that he had a torn uniform. If a student had a torn uniform, there was a probability of $4 / 5$ that he had unpolished shoes, otherwise there was a probability of $3 / 5$ that hedrad polished shoes.
(a) Present this information in
(b) Find the probability that (i)
(ii) A student had exactly two faults
(iv) A student has shaggy hair with polished shoes.
19. (a) Complete the table below for the function of $x^{2}=3 \sin (2 x+30 o)$ and $y=\operatorname{Cos}\left(x-60^{\circ}\right)$ for

$0^{\circ} \leq \mathrm{x} \leq 360^{\circ}$											(2mks)		
X	0°	30°	60o	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
$3 \sin (2 x+30)$	1.50	3.00	1.50		-3.00	-1.50		3.00		-1.80	-3.00		1.50
$\operatorname{Cos}(\mathrm{x}-60)$	0.50		1.00	0.8	-0.5	0.00		-0.87	-1.00	-0.87	-0.50	0.00	0.50

(b) Plot the graph of the two functions on the same axes.

(c) 'Use your graph to solve the following.
(i) $3 \sin \left(2 \mathrm{x}+30^{\circ}\right)=0.8$
(ii) $3 \sin \left(2 x+3 \theta^{G}\right)-\operatorname{Cos}\left(x-60^{\circ}\right)=0$
(d) Determine the periodic angle of function $\mathrm{y}=3 \sin 3 \sin \left(2 \mathrm{x}+30^{\circ}\right)$.
20. In a GP the sum of the $2^{\text {nd }}$ and $3^{\text {rd }}$ terms is 24 and the sum of the $3^{\text {rd }}$ and $4^{\text {th }}$ terms is 72 .
(a) find the first term and the common ratio. \times
(b) Determine the sum of the first 4 terms.
21. The table below shows corresponding values of B that are known to satisfy the equations. $\mathrm{A}=\mathrm{KBn}+1.6$ where K and n are constants. φ

A	4.76	11.6		24.0	72.4	252.8
B	1.0		$e^{\text {e }}$	3.16	6.31	10.0

(a) Draw a suitable straight line graph to represent the above information.
(b) Using the graph determine the values K and n
(c) State equation conneecting A and B

22. Two towns on Latitude $30^{\circ} \mathrm{S}$ are 3000 km a part ind the longitude difference of the two towns. (take $\pi=22 / 7$ and the radius of the earth tobe 6370 km .
(b) The positigas of airport P and Q are $\left(60 \mathrm{oN}, 45 \mathrm{oW}\right.$ and $\mathrm{Q}\left(60^{\circ} \mathrm{N}, \mathrm{K}^{\circ} \mathrm{E}\right)$. It takes a plane 5 hrs to travel due easefrom p and Q average speed of 600 knots.

(i) Calculate the value of K .

(2mks)
(ii) The local time at P is $10.45 \mathrm{a} . \mathrm{m}$. what is the local time at Q when the plane reaches there? (3mks)
(d) Calculate the shortest distance between $\left(30^{\circ} \mathrm{S}, 36^{\circ} \mathrm{E}\right)$ and $\left(30^{\circ} \mathrm{S}, 144^{\circ} \mathrm{W}\right)$ in nautical
23. The table below shows the marks scored by students in chemistry exams.

Marks	$30-34$	$35-39$	$40-444^{5}$	$45-49$	$50-54$	$55-59$	$60-64$
No of studetns	3	6	55^{8} 25^{2}	12	8	9	7

(a) Find the mean of the above data using an assumed mean of 47

(i) The standard Deviation
(ii) The lower quartile
(iii) The upper quartile.
24. A bus company runs a fleet of two types of buser operating between Nairobi and Migori. Type A bus has a capacity to take 52 passengers and 200kg of luggage. Type B carried 32 passengers and 300 kg of luggage. On a certain day, there was 500 passengers with 3500 kg of luggage to be transported. The company could only use a maximum off 9
(a) If the company uses x buses θ type A and y buses of type B write down all the inequalities satisfied by the given conditions.
(b) Represents the inequalitites graphically and use your graph to determine the smallest number of buses that could be used.
(c) If the cost of running one bus of type A is Kshs 7200/- and that of running one bus of type B Kshs.6000/- . find the minimum cost of running the buses.

[^0]: This paper consists of 16 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are

