\qquad
\qquad
\qquad

MIGORI SUB-COUNTY JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

232/1
PHYSICS
Paper 1
2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided.
- Mathematical tables and non-programmable calculators may be used.
- This paper consists of section A and section B.
- Attempt all the questions in the spaces provided.
- ALLOW working MUST be clearly shown.

For Examiners Use

SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
A	$1-12$	25	
B	13	11	
	14	12	
	15	10	
	16	10	
	17	18	
	TOTAL	$\mathbf{8 0}$	

This paper consists of 9 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. The figure below shows the reading ona

Ifitic initial reading was at zero mark determine the volume of one drop in m^{3}
2. State two factors that affect the spring constant of a spring made using a wire of a certain and a given thickness.
\qquad
\qquad
3. A cart of mass 60 kg is pushed along a horizontal path by a horizontal force of 12 N and moves with a constant velocity. The fore is then increase to 18 N . determine
(a) The resistance to the motion of the cart.
(b) The acceleration f the cart.
4. A mass of ice at $-20^{\circ} \mathrm{C}$ is heated up to 10 oC on the axis provided sketch the variation of volume up to $10^{\circ} \mathrm{C}$.
\qquad
5. Water is pumped through a horse pipe at thed ate of $120 \mathrm{~kg} /$ minute and comes out from the nozle with a velocity of $20 \mathrm{~m} / \mathrm{s}$. Find the poweraf the pump.
6. A sphere of mass $3 k g$ moving with a velocity of $4 \mathrm{~m} / \mathrm{s}$ collides head on with a stationary of mass 1.5 kg and imparits to it a velocity of $3.2 \mathrm{~m} / \mathrm{s}$. Calculate the velocity of the 3 kg sphere after collision.
7. I an experiment the diameter d of an oil patch was measured to be 210 mm for an oil drop of radius 0.21 mm Determine the size of the oil molecule.(Take $\pi=22 / 7$)
8. The figure below shows a horizontal tube fitted with two other vertical pipes x and Y . water flows from left to right. Explain why the level of water in tube Y is lower than the level in tube x (2 mks)

9. Us e Kinetic theory of gases to explain pressure law.
\qquad
\qquad
10. Apin floats on water surface. Other than addifig soap and taping the pin, state another method that can be used in the set up to make the pincoink.

11. In vacuum flask, the walls enclosing the vacuum are silvered on the inside. State the reason. (1mk)
\qquad
\qquad
12. The figure beld shows a soda bottle that is full. Explain how the stability of the bottle is affected as the soda is drunk three - quarter way.

13. Explain why deflating the tyresof moto vehicle reduces extent of sinking of the wheel into a soft ground.

SECTION B (55 MARKS)

14. (a) A hot air balloon is tethered to the ground on an windless day as shown in the figure below. The balloon contains $1600 \mathrm{~cm}^{3}$ of hotair of density $0.7 \mathrm{~kg} / \mathrm{m}^{3}$. The mass of the balloon fabric is 400 kg and the density of surrounding air is $1.3 \mathrm{~kg} / \mathrm{m}^{3}$

Calculate

(i) The tension in the rope.
(ii) Acceleration with which the balloon begins to rise when the rope is cut.
(b) A rod of cross section area $3 \mathrm{~cm}^{2}$ length 0.16 m floats vertically upwards ina liquid of density 1.1 $\mathrm{g} / \mathrm{cm}+$ wit its length of 7 cm above the surface. Determine
(i) Mass of the rod.
(ii)The depth to which it will be submerged if put in an liquid of density $0.8 \mathrm{~g} / \mathrm{cm}^{3}(2 \mathrm{mks})$

15 (a) State the pressure law.
(b) The pressure P of a fixed mass of gas at constant temperature ($\mathrm{T}=300 \mathrm{k}$) is varied continuously. The corresponding values of P and (V) of the gas are shown below.

(iii) Given that $\mathrm{P}=\frac{3 \mathrm{PT}}{\mathrm{V}}$ find R from the graph
(c) A container closed with an airtight lideontains air at $1.2 \times 10 \% \mathrm{~Pa}$ and temperature of $32^{\circ} \mathrm{C}$. The container is heated in water both untii the lid opens. If the temperature at which the lid opens is $92^{\circ} \mathrm{C}$, Calculate the pressures atternd by the gas.
16. (a) Define Centripetal force.
(i) If the tension on the string when the object is t the lowers point A is 13.0 N . Calculate the velocity V of the object.
(ii) Tension on the string when the object is at the highest point C of the circle.
(iii) If the string was to break when the object is at the lowest point A of the path sketch the traced path by the object until it hits the ground.
(3mks)

17 (a) A drinking glass of mass 0.4 kg contains 400 g of water at $20^{\circ} \mathrm{C} .0 .02 \mathrm{~kg}$ of ice $0^{\circ} \mathrm{C}$ is dropped into
the glass determine.
(i) The quantity of heat lost by the glass and water.
(ii) The quantity of heat gained by the ice and water.
(iii) The final temperature of the mixture.
(Take specific heat capacity of glass $=670 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$, Latent heat of fusion of ice $=3.34 \mathrm{x}$ $10^{5} \mathrm{~J} / \mathrm{kg}$ specific heat capacity of water $=4.2 \times 10^{3} \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$)
(b) (i) Distinguish between streamline flow and turbulent flow.
(2mks)
(ii) A boat travelling at a very high speed is likely to be dragged into a ship travelling in the opposite direction at high speed. Explain this observation.
(iv) The figure below shows a non-viscous fluid that is not compressible moving through a tube of varied cross-sectional area

If the area of the narrower end is $0.05 \mathrm{~m}^{2}$.calculate the diameter of the wider region.

18 (a) A bicycle has a driving cog wheel of radine $\boldsymbol{H}^{2} 10 \mathrm{~cm}$ and 24 teeth. The driven rear cog wheel has a radius of 40 cm and 8 teeth. Determine
(i) The velocity ratio.
(ii) the re efficiency
(iii) $\mathrm{Dr}_{\text {raw }}^{\text {an }}$ the string over the block and tackle pulley system below and indicate the direction of the effort (E)

(b) (i) A wooden plank of negligible weight and 80 cm long is supported by a knife edge at P . weights of $2 \mathrm{~N}, 4 \mathrm{~N}, \mathrm{~F}$ and 8 N act as shown.

(i) Calculate the value of F
(ii) The moment of the weight of a verticaid door does not significantly affect the moment of the force required to open the door. Give a reason for the this.

