\qquad

232/3
PHYSICS
PRACTICAL
PAPER 3
MARCH/APRIL 2014
TIME: $\mathbf{2}^{½}$ HOURS

Candidate's Signature
Date: \qquad

MIGORI Ş̧̧B-COUNTY JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

232/3
Physics
Paper 3
$21 / 2$ hours
INSTRUCTIONS TO CANDIDATES:

1. Write your name and index number in the spaces provided above.
2. Sign and write the date of the examination in the spaces provided above.
3. You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully.
4. Marks are given for a clear record of the observation actually made, their suitability, accuracy and the use made of them.
5.

For Examiners' Use Only

Question 1	\mathbf{a}	\mathbf{b}	\mathbf{d}	e	\mathbf{f}	\mathbf{g}
Marks Score	2	7	5	2	2	2
Candidate's score						

TOTAL

		Part A				Part B			
Question 2	m	n	o(i)	o(ii)	a	b(i)	b(ii)	b(iii)	
Marks Score	1	8		5		2	3	1	
Candidate's score									

GRAND TOTAL
This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. Question 1

You are provided with the following apparatus

- A mounted wire labeled N with enfs ${ }^{5}$ marked XY
- Avolmeter (0-3 or 0-5.v)
- An ammeter
- A switch
- Two dry cells and a cell holder.
- Six connecting wirewwith atleast two crocodile clips .

Procedure.

(a) Using the mierometer screw gauge, determine the diameter d of the wire at some three different points
\qquad
\qquad mm
 \qquad m
ab) Calculate the cross- sectional area A of the wire in M^{2}
(c) Set up the circuit as shown below.

(d) Vary the length by using the crocodile clip along the wire from (when $\mathrm{L}=0$). Record the voltmeter and ammeter readings in the table below.

Length L (cm)	30 cm	60 cm	40 cm	20 cm	0 cm
Current I (A)					
Voltage (V)					

(f) Calculate the internal resistance of a cell.
(g) From the graph, determine the e.m.f of the battery.

Question2

Part A

Apparatus

- A glass block
- Soft board
- Plain paper
- Four optical pins
- Four thumb pins
- A protractor
- A wire

Method

a) Fix the plain paper on the soft board using the four thumb pins.
b) Place the glass block on the paper (ditat is fixed on the soft board). Let the glass block rest on the paper from the br5oader face as shown in the figure below.

c) Trace the glass blockkusing a pencil.

e) Mark point x on one of the longer side of the traced glass block as shown. Point x should be 2 cm from edge.

Construct a normal at X to emerge through line DC. Let this normal meet line DC at point M.
f) Mark point N along the emergent normal at 5 cm from M
g) Construct line NP to meet the normal at N at 90° Line NP should be 10 cm .
h) Using a protractor, construct an incident ray $\mathbf{R X}$ at an angle of incident $\mathrm{i}=10^{\circ}$. Fix two pins P_{1} and P_{2} along RX.
i) Replace the glass block to the traced figure.
j) View the path of the incident ray RX through this glass block using the other two pins P_{3} and P_{4}. This can be done by ensuring that the image of pin P_{1} and P_{2} (as seen from the glass block) are in line with pin P_{3} and P_{4}.
k) Remove the glass block and draw the emergent ray through P_{3} and P_{4}.
1)

Measure the of the emergent ray point N along line shown below.

(5mks)
n) Plot the graph of $\sin 2 \mathrm{i}$ (vertical axis) against d.

o) (i) Calculate the gradient of the graph.
(ii) Find \mathbf{d} when the angle of incidenceis 45°

2 Part B

You are provided with the following

1. A metre rule a^{2}
2. 3 pieces of thread (of 30 cm each)
3. A clamp boss and stand
4. A mass labeled W.
5. 2 thiasses of 20 g .
$6 . e^{22}$ masses of 50 g .
(a): 2 masses of 10 g

PROCEDURE

(a) Using a thread, suspend the meter rule from the stand and note down the centre of gravity G
$G=$ \qquad . Cm
(b) (i) Hang the mass labeled w from the 65 cm mark suspend the 50 g mass from the other side and adjust its position till the system is in equilibrium as shown in the figure below. Record the values of

$$
\begin{equation*}
\mathrm{X}= \tag{1mk}
\end{equation*}
$$

\qquad .m
$\mathrm{Y}=$ \qquad .m

(ii) Measure the distance x and record the value on the table below. Maintaining the point of suspension of the metre rule at G and the mass labeled W at 65 cm , repeat the experiment for mass of $70 \mathrm{~g}, 90 \mathrm{~g}$ and 100 g . enter the results in the table below.

Mass (g)	Distance $\frac{\mathrm{I}}{\mathrm{X}}(\mathrm{m})$
50	

(iii) Given that $\mathrm{F}=\underline{0.3 \mathrm{TY}} \underset{\mathrm{x}}{\operatorname{and}} \underset{x^{2}}{\mathrm{a}^{2}}=0.149$ find the value of T

