SCHOOL: SIGNATURE

233/3
CHEMISTRY
PAPER 3 / PRACTICAL
JULY / AUGUST, 2014
2¼ HOURS
MMS JOINT EXAMINATION - 2014

Kenya Certificate of Secondary Education

233/3
CHEMISTRY
PAPER 3 / PRACTICAL
JULY / AUGUST 2014

INSTRUCTIONS TO CANDIDATES

* Answer all questions in the spaces provided on the question paper
* You are not allowed to start working with the apparatus for the $1^{\text {st }} 1 / 4 h o u r$ of the $2^{1} / 4$ hours allowed for this paper. this time is to enable you read through the question paper and make sure you have all the chemicals and the apparatus that you may need.
* Candidates are advised to record their observations as they are made
* Mathematical tables and electronic calculators may be used

For Examiners Use Only

Question	Maximum score	Candidate's Score
1	19	
2	10	
3	11	
Total	40	

1. You are provided with

- Sulphuric acid, solution A
- 0.5M Sodium hydroxide, sofution B
- Zinc powder, Solid C

You are required to determine thé concentration of Sulphuric acid in moles per litre

Procedure I:

Measure $50 \mathrm{~cm}^{3}$ of solư̂tion A using a measuring cylinder and place it in a $100 \mathrm{~cm}^{3}$ plastic beaker. Stir the solution gently wifth a thermometer and take it's temperature after every thirty seconds. After 60 seconds add all of solided ${ }^{2} \mathrm{C}$ at once and stir gently using the thermometer.
Record the temperature of the mixture after every 30 seconds. Retain the solution for use in procedure II.

(c) Using the graph, determine the highest change in temperature $\Delta \mathrm{T}$
(d) Calculate the heat change for the rearion given that the specific heat capacity for water is $4.2 \mathrm{~J} / \mathrm{g} / \mathrm{K}$ and that the density of cessulting solution is $1 \mathrm{~g} / \mathrm{cm}^{3}$.
(e) Given that the molar heat of reaction of Sulphuric acid with solid C is $323 \mathrm{KJmol}^{-1}$, calculafe the number of moles of Sulphuric acid that were used during the reaction

(f) Procedure II

Place all the solution obtained in procedure I in a clean $100 \mathrm{~cm}^{3}$ measuring cylinder. Add distilled water to make $100 \mathrm{~cm}^{3}$ solution. Transfer the solution into a beaker and shake well. Label the resulting solution as D. Fill the burette with solution B. Pipette $25.0 \mathrm{~cm}^{3}$ of solution D into a conical flask and add 2-3 drops of phenolphthalein indicator. Titrate solution B and record the results in the table below

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of B used $\left(\mathrm{cm}^{3}\right)$			

(g) Determine the average volume of solution B used
(h) Calculate the number of moles of sodium hydroxide solution B used
(i) Determine
(i) The number of moles of Sulphuric acid in $25.0 \mathrm{~cm}^{3}$ of solution C
(ii) Number of moles of Sulphugre acid in $100 \mathrm{~cm}^{3}$ of solution D
(iiił) Using the results from (e) and (i) (ii) above calculate the total number of moles of Sulphuric acid in the $50 \mathrm{~cm}^{3}$ of solution A
(iv) Calculate the concentration of the original Sulphuric acid, solution A in moles per litre
2. You are provided with

- A clean piece of Magnesium ribbon about 6 cm long.
- 4 M Hydrochloric acid
- 10 ml measuring cylinder
- 100 ml beaker (glass beaker)
- Ruler

Procedure

Measure $2 \mathrm{~cm}^{3}$ of 4 M HCl into the 100 ml glass beaker. Add $8 \mathrm{~cm}^{3}$ of distilled water and shake to mix. Use the ruler to measure and cut off a 1 cm long piece of Magnesium from the ribbon. Add the piece of Magnesium into the Hydrochloric acid in the beaker and start a stop watch immediately. Shake the mixture and record the time taken for the ribbon to disappear.

Repeat using the volumes of acid and water as shown in the table below.

Table of results

Experiment number	$1 e^{8}$	2	3	4	5	
Volume of 4M HCl (cm^{3})	$2{ }_{4}{ }^{\text {c }}$	4	6	8	10	
Volume of distilled $\mathrm{H}_{2} \mathrm{Ocm}{ }^{3}$	8	6	4	2	0	
Time taken, t (seconds)						
$\text { Rate } \frac{1}{t}\left(\sec ^{-1}\right) \quad s \nu^{j \gamma^{2}}$						

(6) Plot a graph of volume of 4 M HCl against the rate of reaction, $\frac{i}{t}$ on the graph paper provided.
(b) Using a dotted line, sketch a graph p^{2} that would be obtained if 2 M HCl had been used instead.
(c) Use your graph to determine the rate when $7 \mathrm{~cm}^{3}$ of HCl is used
(d) Calculate the coxncentration of the acid in experiment 3 in $\mathrm{g} / \mathrm{cm}^{3}(\mathrm{H}=1, \mathrm{Cl}=35.5)$
(e) If the mass of Magnesium ribbon used in the $1^{\text {st }}$ experiment was 2.0 g determine the volume of gas produced. Molar gas volume $=24 \mathrm{dm}^{3}$ at room temperature $\mathrm{Mg}=24$
3. You are provided with solid H which is a mixture of two salts. Carry out the tests below and record your observations and inferences in the tables below.
(a) Place a spatula end full of solid H into a boiling tube and add $10 \mathrm{~cm}^{3}$ of distilled water. Shake the mixture well. Filter, retain the residue and divide the filtrate into four portions.
(i) To the $1^{\text {st }}$ portion of the filtrate add aqueous Sodium hydroxide drop wise till in excess

Observations	Inferences		
	$(1 \mathrm{mk})$		
		$(1 \mathrm{mk})$	

(ii) To the $2^{\text {nd }}$ portion add aqueous Ammonia drop wise till in excess

Observations	Inferences		
	$(1 \mathrm{mk})$		
		$(1 \mathrm{mk})$	

(iii) To the third portion add a few drops of Lead (II) nitrate solution

(int ${ }^{\circ}$ To the $4^{\text {th }}$ portion add $2-3$ drops of dilute Nitric acid followed by Barium nitrate solution

Observations	Inferences	
	$(1 / 2 \mathrm{mk})$	
		$(1 / 2 \mathrm{mk})$

(b) Transfer all the residue into a boiling tube and heat strongly and test for the gas produced by dipping the tip of a glass rod in a solution of Calcium hydroxide and place it at the mouth of the boiling tube.

| Observations | Inferences | |
| :--- | ---: | ---: | :--- |
| | | |
| | $(1 / 2 \mathrm{mk})$ | $(1 / 2 \mathrm{mk})$ |

(c) Add $5 \mathrm{~cm}^{3}$ of dilute Nitric acid to the solid remaining in the boiling tube to dissolve. Divide the resulting solution into three portions.
(j) To the $1^{\text {st }}$ portion add aqueous Ammonia drop wise until in excess

Observations	Inferences
	$(1 \mathrm{mk})$

(ii) To the $2^{\text {nd }}$ portion add $2-3$ (Grops of Sodium sulphate solution

Observationsc		Inferences	
	(1/2mk)		(1/2mk)

(iii) To the $3^{\text {rd }}$ portion add $2-3$ drops of Potassium iodide solution

Observations	Inferences		
	$(1 / 2 \mathrm{mk})$		
		$(1 / 2 \mathrm{mk})$	

