\qquad

CANDIDATES' NAME \qquad INDEX NO

CANDIDATES' SIGNATURE DATE

NAKURU DISTRICT SECONDARY SCHOOLS TRIAL EXAMINATION 2014

Kenya Certificate of Secondary Education

232 - PHYSICS PAPER 2

JULY/AUGUST 2014

TIME:

INSTRUCTIONS:

This paper consists of two sections \boldsymbol{A} and \boldsymbol{B}.
Answer all questions from both sections in the spaces provided.
All working must be clearly shown. Electronic calculator may be used.

FOR EXAMINER'S USE ONLY

SECTION	QUESTION	MAX SCORE	CANDIDATE'S SCORE
A	$1-12$	25	
	13	11	
	14	7	
	15	12	
	16	13	
	17	80	
	TOTAL	12	

SECTION (25 MARKS)

1. Figure1 shows two plane mirrors inerined at an angle x from each other.

A viewer counts a total of seven bages looking directly from the object \mathbf{O}. Determine the value of \mathbf{x}.
(2mks)

Figure 1
2. Figure 2 shows two spherical materials one an insulator while the other a conductor. Negative charges are introduced at point A by contact method in each case.

Figure 2

On the same figure indicate the final position of the charges. Explain your answer.
3. Two capacitors of capacitance $2 \mu \mathrm{~F}$ and $1 \mu \mathrm{~F}$ are connected in parallel. A potential difference of 3 V is applied across them? Find the energy stored in the combination (3mks)
4. girl shouts and hears an echo after 0.6 second later from a cliff. If velocity of sound is $330 \mathrm{~m} / \mathrm{s}$. calculate the distance between her and the cliff.
(3mks)
5. In the circuit diagram shown in figure 3, the lamps are identical and cells are also identical.

 with àcertain defect.

Figure 4
Name the defect and state the cause of this defect
(2mk)
7. Two pins are hanging from a magnet as sdiown in the figure 5

Figure 5

Explain why the pins do not hang vertically downwards
8. State the necessary conditions for stationary waves to be generated
9. The speed of yellow light in the prism is $1.88 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Determine the refractive index of the glass prism material. (Speed of light in vacuum $\mathrm{C}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
10. A 2.5 kW immersion heater is used to het water. Calculate the operating voltage at the heater if its resistance is 24
el1. Arrange the following in order of increasing frequency Visible light, x-rays, Infra-red radiation, UV light, Radio waves
13. (a) State Ohm's law
(b) An electrician.installed electric wiring in a house and connected the bulbs and the switches as sisown in figure 6.

Figure 6
State what happens when switch;
(i) S_{1} only is closed
(ii) S_{1} and S_{3} only are closed
(iii) All the switches are closed. Explain your answer

(i) The total resistance of the circuit
(ii) The total current flowing in the circuit
(iii) The voltage drop across R_{1}
14. The following graph shows the variation of image distance, V , with magnification, M , for a converging lens.

Using the graph and the equation $\frac{V}{f}=M+1$ to determine:
(i) The object position when the image position is 45 cm
(3 marks)
(ii) The focal length of the lens
(2 marks)
(iii) The power of the lens.
15. (a) (i) Stater orne cause of energy losses in a transformer and explain how it can be minimized $e^{-5^{5}}$
(ii)Describe briefly the energy changes involved in the generation of electrical energy at a hydropower station
(iii)What are the advantages of transmitting power at:
(I) Very high voltages
(II) Alternating voltage
(b)(i) Explain how electrons are prodficed in a cathode ray oscilloscope (CRO) (2 mk
(ii) State tyo functions of the anodes in a CRO.
(iii) At what part of the cathode ray oscilloscope would the time base be connected
(iv) State why the tube is highly evacuated
16. (a)(i) An x-ray tube is operating with an anode potential of 50 kV . Calculate: the maximum speed of an electron(Charge of an electron is $1.6 \times 10^{-19} \mathrm{C}$ mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$)
(3mks)
(ii) A faulty X-ray tube generates X-rays of higher intensity than required. State what adjustment should be made to correct the defect.

(iv) Distinguish between hard and sof $f 0^{5^{5}} \mathrm{x}^{5^{\circ}}$-rays

(v) Explain the effect of exposing a patient to X-rays for too long
(b)(i)What is meant by the term work function?
ii) The work function of a certain material is 3.2 eV . Determine the threshold frequency for the material. (1 electron $\operatorname{Volt}(\mathrm{eV})=1.6 \times 10^{-19} \mathrm{~J}$ and planks constant $=$ $6.62 \times 10^{-34} \mathrm{Js}$)
17.(a)Study figure 8 and answer the follafing questions

Figure 8

(vi) A radioactive source has an activit $6 y^{5}$ of $810 \mathrm{c} / \mathrm{s}$ and after 63hours the count rate falls to $110 \mathrm{c} / \mathrm{s}$. If the background count is $10 \mathrm{c} / \mathrm{s}$, determine the half-life of the source
(b) $)^{\partial}$ (i) Draw using appropriate symbols the circuit diagram of a junction diode in reverse bias
ii) Extrinsic semiconductors are made through a process called doping. Explain how doping produces an n-type semi-conductor
iii) Distinguish between a semiconductor and a conductors

