NAME: \qquad
\qquad
\qquad
\qquad

121/2

MATHEMATICS

PAPER 2

JULY / AUGUST 2014
TIME: 2½ HOURS

NANDI CENTRAL DISTRICT JOINT MOCK 2014

Kenyaceritificate of Secondary Education (KCSE)

MATHEMATICS

PAPER 2

TIME: 2½ HOURS

INSTRUCTIONS TO CANDIDATES

a) Write your Name and Index Number in the spaces provided at the top of this page.
b) Sign and write the date of examination in the spaces provided above.
c) This paper contains TWO sections: section I and section II
d) Answer all the questions in Section I and strictly any FIVE questions in section II.
e) All answers and working must be written on the question paper in the spaces provided below each question.
f) Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
g) Marks may be given for correct working even if the answer is wrong.
h) Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.

FOR EXAMINER'S USE ONLY:

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

Section II

17	18	19	20	21	22	23	24	TOTAL

SECTION $1_{6}^{*}(50$ MARKS)

Answer ALL the Questions in this section in the spaces provided.

1. Work out the following:

$$
\frac{2+\sqrt{5}}{3+\sqrt{5}}+\frac{2-\sqrt{5}}{3-\sqrt{5}}
$$

2. Find all the integral values of x which satisfy the inequalities.

$$
3(3-x)<5 x-9<2 x+8
$$

3. Given that $\log 3=1.583$ and $\log 5=2.322$. Without using tables or calculators, evaluate:
(a) $\log 135$
(b) $\log 5.4$
4. The first and the last terms of an arithmetic progression is -5 and 270 respectively.
(a) Find the number of terms; if the common difference is 2.75.
(b) How many terms will be able to give the same last term, if the common difference is 5 .
5. Two towns ELVIRA and MAKITU are such that their local times differ by 3 hours. If ELVIRA is on $20^{\circ} \mathrm{W}, 10^{\circ} \mathrm{N}$, find two possible positions of MAKITU town.
6. Mr. Bett wants to buy a flat screen TV set on hire purchase. The cash price is sh. 28,000 .

He can pay the cash Price or make a down payment of sh. 8,000 and 15 monthly installments of sh. 2000 each. Calculate the rate of interest charged per month.
7. Solve for x if $O \leq X \leq 2 \pi^{c}$ in:
$2 \sin (x-\pi / 6)^{c}=-\sqrt{3}$
10. Find the co-ordinates of a point at which the gradient of the curve $y=x^{2}-3 x+3$ is seven.
11. ${ }^{2}$ solid has a base in the shape of a rhombus whose diagonals $A C$ and $B D$ are 32 cm and 24 cm respectively. The height CE which is perpendicular to $A C, B C$ and $D C$ is 24 cm .

Calculate: the angles between the planes EBD and ABCD.
12. The capacity of milk in Kapsabet Dairies is given to the nearest 10 ml . Find the relative error in $\frac{a+b}{c-d}$, given that $\mathrm{a}=77 \mathrm{ml}, \mathrm{b}=23 \mathrm{ml}, \mathrm{c}_{x}=36 \mathrm{ml}$ and $\mathrm{d}=16 \mathrm{ml}$.
13. Mr. Kogo boüght 5 physics books and 6 mathematical books for a total of Kshs. 2440. Mr. Ali boưght 7 physics books and 9 mathematics books for a total of Ksh. 3560.
(i) SForm 6 a matrix equation to represent the above information.
(ii) Use matrix method to find the price of a physics book and that of a mathematics book.
(3mks)
14. A poultry farmer in Lelmokwo vaccinated 540 of his 720 chicken against a disease. Two months later 5% of the vaccinated and 80% of the unvaccinated chicken contracted the disease. Calculate the probability that the chicken chosen at random contracted the disease. (3mks)
15. How much water must be added to 36 litres of a liquid containing 65% alcohol to obtain a liquid containing 45% alcohol?
16. Nelly drew a square ABCD of sides 5 cm accurately. While refilling her pen, a drop of ink (I) landed inside the square $A B C D$.
Given that $\mathrm{IA} \leq 5 \mathrm{~cm}, \mathrm{IA} \geq \mathrm{IC}$ and the area of triangle $\mathrm{DCI}>10 \mathrm{~cm} 2$.
Locate by construction the region I.

SECTION $\$$ (50 MARKS)

Answer any five questions in this section
17. A triangle $A B C$ has the verticals $A\left(-5 y^{\sigma}-2\right), B(-3,-2)$ and $C(-5,-5)$. The triangle is rotated through a positive quarter turn about the ofigin to obtain the image $A^{\prime} B^{\prime} C^{\prime}$. The triangle $A^{\prime} B^{\prime} C^{\prime}$ is then reflected on the line $y+x=0$ 姲 get triangle A " $B^{\prime \prime} C^{\prime \prime}$.
(a) On the grid provided, plot triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. (4mks)
(b) Describe a single transisformation that maps ABC onto A " $B^{\prime \prime} C$ " and the matrix of transformation.
(c) Find the co-ordinates of the image of ABC under a stretch, scale factor 2 parallel to the x axis and y -axis invariant. (3mks)

18. The table below shows the analysis of examination marks scored by 160 candidates.

Marks (\%)	1-10	11-20	21-30	31-40	1-50	51-60	61-70	71-80	81-90	91-100
No. of candidates	2	6	15	$a^{e^{2} 2^{2 x}}$	36	34	20	15	6	4

(a) Draw a cumulative frequency-curve for the data.
(b) State the modal class. $8, y^{8}$
(1mk)
(c) Use the graph to estimate:
(i) The quartile deviation.
(ii) How many c'andidates passed if a mark of 35% and above was a pass?
19. In the figure below, O is the centre of the circle. A, B, C and D are points on the circumference of the circle. $A ; O, X$ and C are points a straight line. $D E$ is a tangent to the circle at D. Angle $B O C=48^{\circ}$ and $C A D=36^{\circ}$.

(a) Givi $\underset{\text { igg }}{ }$ reasons in each case, find the value of the following angles:
(i) Angle CBA.
(ii) Angle BDE
(2mks)
(iii) Angle CED
(2mks)
(b) It is also given that $A X=12 \mathrm{~cm}, X C=4 \mathrm{~cm}$ and $D B=14 \mathrm{~cm}$ and $D E=15 \mathrm{~cm}$. Calculate
(i) DX
(ii) AE
(2mks)
20. (a) Complete the table below for $y=\sin 2 x$ and $y=\sin \left(2 x+30^{\circ}\right)$ giving values to $2 d p$.

x	0	15	30	45	60	750 ${ }^{2}$	90	105	120	135	150	165	180
$\operatorname{Sin} 2 \mathrm{x}$	0				0.87°				-0.87				0.0
$\operatorname{Sin}\left(2 x+30^{\circ}\right)$	0.5				${ }^{5} .50$				-1.0				0.5

(b) Draw the graph of $y=2 x$ and $y=\left(2 x+30^{\circ}\right)$ on the same axis.

(c) Use your graph to solve $\sin \left(2 x+30^{\circ}\right)-\sin 2 x=0$.
(d) Describe the transformation which maps the wave sin $2 x$ onto the wave of $\sin (2 x+30)$
(e) State the amplitude and period of $\mathrm{y}=\mathrm{a} \cos (\mathrm{bx}+\mathrm{c})$.
21. In the triangle $X Y Z, M$ is the midpoint of the side $Y Z$ and L is the midpoint of $X M$. The line $Y L$ produced meets XZ at N. Given that $\overrightarrow{Y X} \underset{\sim}{\sim} \underbrace{Q_{i}^{2}}_{\sim}$ and $\overrightarrow{X L}=\underset{\sim}{y}$.

(a) Expre ${ }^{\frac{8}{s}}$
(2mks)
(b) Given that $\overrightarrow{Y N}=q \overrightarrow{Y L}$ and $\overrightarrow{X N}=r \overrightarrow{X Z}$. Use vector equation $\overrightarrow{Y N}=\overrightarrow{Y X}+\overrightarrow{X N}$ to find the value of q and r.
(c) From (b) above, state the ratio in which:
(i) N divides line YL
(ii) N divides XZ
22. (a) The length of two shorter sides of a right anigled triangle are $(x+1) \mathrm{cm}$ and $(3 x-2) \mathrm{cm}$. While the length of the hypotenuse is $(2 x+1) \mathrm{cm}$, for x in the triangle.
(b) Complete the table below, for the function $y=3 x^{2}-7 x+2$.

X	-1	0	1	2	3
$3 x^{2}$	3	0	3	12	-
$-7 x$	7	0	-	-14	-21
2	2	-	2	2	1
Y	-	2	-	-	8

(c) On the grid provided below, draw the graph of the function $y=3 x^{2}-7 x+$ for $-1 \leq x \leq 3$ and use the graph to estimate the value of x in (a) above.
(d) Use your graph above to solve the equation $O=6 x^{2}-16 x+5$

\qquad
23. Three warships X, Y and Z are at the ocean swich that ship Y is 500 km on a bearing of 030° FROM SHIP x. Ship Z is 750 km from shiper and on a bearing of 140° from X . An enemy ship S is sighted 900 km due East of ship Y. Calculate:
(a) The bearing of Z from Y.
(b) The distance of X from Z.
(c) The distance S from Z .
(d) The shortest distance from X to the direct route between Y and Z .
24. A particle moving in a straight line passes a fixed point O on the line with velocity $7 \mathrm{~m} / \mathrm{s}$ the acceleration $9 \mathrm{~m} / \mathrm{s}^{2}$ of a particle t seconds, after passing O is given by the equation $a=4-6 t$. Calculate:
(a) The velocity of particle 2 seconals after passing 0 .
(b) The time taken to reach the maximum distance from O in the direction of the initial motion.
(c) The value of the maximum distance.

