	NAME:	NDEX NO:
	NAME: SIGNATURE: SCHOOL:	DATE :
	SCHOOL:	
	232 / 3 PHYSICS PAPER 3 (PRACTICAL)	
	PHYSICS	
	PAPER 3	
	(PRACTICAL)	
	JULY / AUGUST 2014	
	~	
	NANDI CENTRAL DIS	
.0	e *	
more Err	NANDI CENTRAL DIS	STRICT MOCK 2014
&of.	Kenya Certificate of Secondary Education ((KCSE)

NANDI CENTRAL DISTRICT MOCK 2014

PHYSICS PAPER 3

TIME: 2 1/2 HOURS

INSTRUCTIONS TO CANDIDATES

- (a) Write your Name and Index Number in the spaces provided above.
- (b) Sign and write the date of Examination in the spaces provided above.
- (c) Answer all questions in the spaces provided.
- (d) You are supposed to spend the first 15 minutes of the 21/2 hours allowed for this paper reading the whole paper carefully before commencing your work.
- (e) Marks will be given for clear records of observations actually made, their suitability, accuracy and the use made of them.
- (f) Candidates are advised to record their observations as soon as they are made.
- (g) All working must be clearly shown where necessary.
- (h) Mathematical tables and silent electronic calculators may be used.

FOR EXAMINER'S USE ONLY

Question 1	(a)	(e)	(f)	(g)	(h)	TOTAL
Max. Score	2	7	5	2	4	20
Candidate's Score						

Question 2	(f)	(g)	(h)	(I)	(j)	(c)	TOTAL
Max. Score	5	5	2	2	1	5	20
Candidate's Score							

GRAND TOTAL

- 1. You are provided with the following:-
 - Wooden metre rule.
 - Five 50g masses.
 - Vernier calipers
 - Stop watch
 - G-clamp
 - Cellotape

Proceed as follows:

For Note Free Ica Using the vernier calipers, measure and record the width x and the thickness y of the metre rule.

Set up the apparatus as shown in figure i below such that the length I = 0.9m. (b)

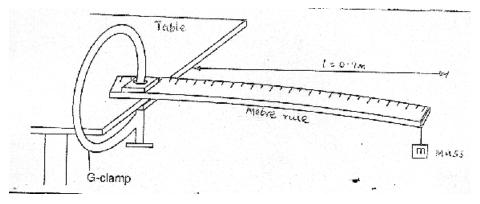


Figure (i)

- Using a cellotape, fix one 20gmass firmly on the metre rule such that geometrical centre is directly below the free edge of the metre rule.
- (d) Pull the end of the metre rule with the mass m = 200g gently in order to produce small vertical displacement, then release to oscillate. Record the time t for 10 complete oscillations.

(e) Repeat part (c) and (d) for other values of mass equal to 40, 60, 80 100g and complete the table shown below.

(7mks)

	e`	y	T	T	
Mass (m) (kg)	0.02	0.04	0.06	0.08	0.10
Time t for 10	££e.				
oscillations (s)	12				
Period Tas)					
250					
T ² (S ²) (3d.p)					
\$ ·					

(f) Plot the graph of T² (y-axis) against m. (5mks)

(h) The relationship between T2 and M is given as

Where K and P are constants.

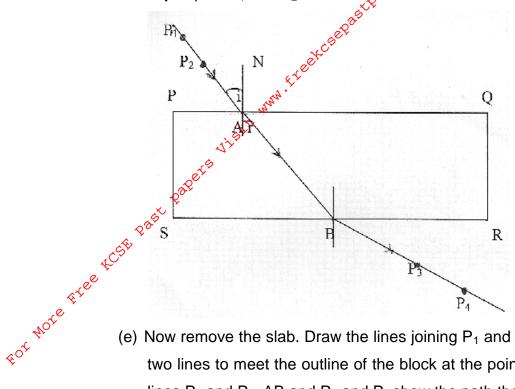
(i) Determine the value of k, given that: (3mks)

 $S = \frac{16^{-2}l^3}{xy^3k}$

(ii) Determine the value of P, given that $P = T^2$, when m = 0 (1mk)

2. Part A

You are provided with the following apparatus:-


- A rectangular glass slab.
- A soft board.
- White sheets of paper.
- 4 optical pins.
- Four tamp pin

NB: You should have mathematical tables / calculator, geometrical set and a transparent ruler.

Proceed as follows:

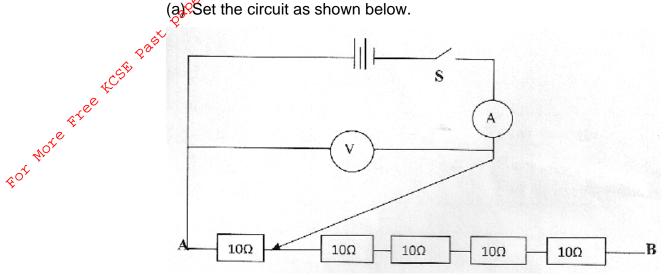
- (a) Fix a white sheet of paper on the soft board using tamp pins.
- (b) Place the glass slab on the white piece of paper. Trace the outline of the glass slap on the paper.
- (c) Stick two pins P₁ and P₂ so that the line joining them falls on the edge of the glass obliquely, forming an angle of 15⁰ with normal NA.

(d) Stick two other pins P₃ and P₄ so that they appear to be in line with the images of object pins P₁ and P₂ in the slab as shown on the diagram below.

- (e) Now remove the slab. Draw the lines joining P₁ and P₂ and P₃ and P₄. Extend the two lines to meet the outline of the block at the points A and B respectively. The lines P₁ and P₂, AB and P₃ and P₄ show the path the ray follows as it passes from one medium to another: air to glass and back to air again. Mark the direction with arrows.
- (f) Measure the angle of refraction (r) between AB and the normal. Record it in the table below. Repeat the procedure for angles of incidence of 30°, 45°, 60° and 75° and record the values in the table below. (5mks)

Angle of incidence (i ⁰)	15 ⁰	30 ⁰	45 ⁰	60 ⁰	75 ⁰
Angle of refraction (r ⁰)					
Sin i ⁰					
Sin r ⁰					

(g) Draw a graph of $\sin i^0$ (Y-axis) against $\sin r^0$ (X-axis) in the grid provided below.


(5mks)

(h) Determine the gradient of the graph and write down the equation of the graph. (2mks)

- (i) Compare the value of refractive index, n, if $n = \sin i / \sin r$ using a point on the graph. (2mks)
- (j) NB: Remember to hand in the pieces of white sheet of paper you used. (1mk)

You are provided with the following:-

- Two dry cells and a cell holder One voltmeter (0-5\/^\) i.
- ii.
- One ammeter (0-1A) or (0-2.5A) iii.
- Five resistors labeled AB İ٧.
- One resistor labeled R ٧.
- A switch vi.
- 7 connecting wires vii.
 - (a) Set the circuit as shown below.

- (b) With the crocodile clip across resistor 10, close the switch, read and record the ammeter and voltmeter reading in the table below.
- (c) (i) Repeat the procedure (e) above with crocodile clips across resistors 20 , 30 , 40 and 50 respectively, each time recording the corresponding values for V and I in the table below and complete the table.

(4mks)

Resistors ()	10	20	30	40	50
Current I (A)					
Voltage V(V)					
K = ^V / _I					

(ii) Determine the average value of K.

(1mk)