	۵. ۲	
NAME:	INDEX NO:	
SCHOOL:	DATE :	
	CANDIDATE'S SIGNATURE:	
233/2	www.	
PAPER 2		

de.

NANDI NORTH SUB-COUNTY JOINT **EVALUATION 2014**

FOT MOTE Free ACSE Kenya Certificate of Secondary Education (K.C.S.E.) CHEMISTRY PAPER 2 TIME: 2 HOURS

THEORY

JULY / AUGUST 2014

TIME: 2 HOURS Past

INSTRUCTIONS TO CANDIDATES

- Write your Name, Index Number and School in the spaces provided above.
- Answer all the questions in the spaces provided after each question.
- Mathematical tables and non-programmable electronic calculators may be used.
- ALL working must be clearly shown where necessary.
- Candidates should check the question paper to ascertain that all the questions are missing.
- ALL answers must be written in English.

QUESTIONS	MAX SCORE	CANDITATE'S SCORE
1	08	
2	11	
3	13	
4	08	
5	10	
6	10	
7	11	
8	09	
TOTAL	80	

FOR EXAMINER'S USE ONLY

Air was passed through several reagents as shown in the flow chart below.

(d) Use the standard reduction electrode potentials given below to answer the guestions that follow.

com

$Zn^{2+}_{(aq)} + 2e^{-}$	Zn(s)	Е	= -0.76V
Pb ²⁺ _(aq) + 2e ⁻	Pb(s)	Е	= -0.13V
$Cu^{2+}_{(aq)} + 2e^{-}$	Cu(s)	Е	= +0.34V
Ag ²⁺ (aq) + 2e	Ag(s)	Е	= +0.80V

The metal copper, zinc, silver and lead were placed in different solutions as shown:-

	PMetal	Metal ion	Reaction / No reaction
1 CSE	Cu	Ag ²⁺ (aq	
ee '	Zn	Cu ²⁺ (aq)	
e e	Ag	Pb ²⁺ (aq)	
40.	Pb	Zn ²⁺ (aq)	

(i) Indicate in the table with a tick () where a reaction occurs and a cross (x) where no reaction occurs. (2mks)

(ii) Identify the strongest reducing agent. (1mk)

.....

(e) (i) Draw a well labeled diagram of the electrochemical cell when copper and magnesium half cells are connected. (3mks)

(ii) On the diagram you have drawn in e(i) above, label the anode and the cathode and also show the direction of flow of electrons. (2mks)

3. The scheme below shows a series of reactions starting with Propanol. Study it and answer the questions that follow:-

(g) If the relative molecular mass of P is 35,700 determine the value of n. (2mks) (C = 12, H = 1).....

4. A conical flask was connected to a gas syringe by means of a stopper and a delivery tube. 30cm³ of water and 0.5g of Manganese (IV) Oxide were placed in the flask and the 5cm³ of Hydrogen Peroxide were added. The flask was quickly stoppered and the readings of volume of gas in syringe were recorded after every 10 seconds. The results obtained were recorded in the table below.

ن م بره

Time (sec)	0 1	¹ 10	20	30	40	50	60	70	80
Volume (cm ³)	Q	18	30	40	48	53	57	58	58
J ^A									

- (a) (i) Drawe a set-up used to carry out the above experiment. (3mks)
 - (b) (i) Plot a graph of volume (cm³) shown in the syringe against time (sec). Label the curve A. (3mks)

$2NO_{2(g)}$	$N_2O_{4(g)}$
Red/Brown [∖]	(Yellow)

 $DH^{\emptyset}f = +9.7KJmol^{-1}$

		CON	
	Stat trou	e and explain the observation made when the sealed glass jar is low gh of ice cold water.	vered in a (2mks)
		ere ^{epot}	
5. (a	a) Exp sam	plain the following observation, giving an equation where necessary. The of tap water is boiled for some time, a white precipitate is formed	When a . (1mk)
		enter terrester terr	
	200 ²		
C to) A sa mag	ample of hard water is found to contain 0.25g of calcium chloride and gnesium sulphate per litre.	d 0.24g of
S. S	(1)	carbonate.	us sodium (2mks)
MOTE			
\$ ^{0⁷}			
	(ii)	Calculate the mass of anhydrous sodium carbonate required to so of the water sample. (Ca=40, Mg = 24, Na =23, O = 16, Cl = 35.5, S = 32 and C = 12)	ften a litre (3mks)
	(iii)	Give two reasons why it is necessary / important to soften supplied for domestic use.	tap water (2mks)
(C) Stu	dy the flow chart below and answer the questions that follow.	

Nitric (v) acid	 SOLUTION S		+	BROWN GAS
		Fewo	drops of	NH _{3(aq)}

6. (a) The table below gives information on four elements, represented by letters P, Q, R and S (not the actual symbols of the elements). Study it and answer the questions that follow:

	Element	Atomic number	Atomic radius (nm)	Tonic radius (nm)				
	Р	12	0.136	0.065				
	Q	17	0.99	0.181				
	R	19	0.203	0.099				
	S	20	0.174	0.099				
(i) What <u>two</u>) What two elements have similar chemical properties? (1mk)						
(i	i) Which ele	ement(s) will not condu	ct electricity? Explain y	/our answer. (2mks)				
(i	ii) Why is th	e atomic radius of S le	ss than that of R?	(2mks)				

(b) Below are 1st, 2nd and 3rd ionization energies (KJ mol⁻¹) of elements A, B, C, D and E (not the actual symbols of the elements).

cÔ

	Element	1st ionization energy	2nd ionization energy	3rd ionization energy
	А	e ⁰ 500	4600	6900
	В	740	1500	7700
	С	1 ¹¹ 630	1600	3000
	D	900	1800	14800
	EJY	580	1800	2700
oree tost t				
A. P. T.	(::) O alaat			
25	(II) Select periodi	any two elements that c table. Which group d	o they belong?	(3mks)

7. The industrial extraction of lead metal from its ore is as illustrated in the flow chart below:

	CON	
	K:	(1mk)
	C:	(1mk)
	R:	(1mk)
(e)	Using an equation show the role of iron in the blast furnace.	(1mk)
	she ^{it}	
	ARE	
(f) ₂ 7	Tetraethyl lead is an anti-knock additive that is added to petrol. Th additive is however being phased out. Give a reason to this.	is petrol (1mk)
<i>Ateet</i>		
for Nore		