NAME: \qquad
\qquad
\qquad
\qquad
\qquad

121/1
MATHEMATICS
PAPER 1
JULY / AUGUST 2014
TIME: 2½ HOURS

NANDI NORTH SUB-COUNTY JOINT EVALUATION 2014

Kenya Certificate of Secondary Education (KCSE) MATHEMATICS
PAPER 1
TIME: 2½ HOURS

INSTRUCTIONS TO CANDIDATES

a) Write your Name and Index Number in the spaces provided at the top of this page.
b) Sign and write the Date of Examination in the spaces provided above.
c) This paper contains TWO sections: section I and section II
d) Answer all the questions in section I and any FIVE questions from section II.
e) All answers and working must be written on the question paper in the spaces provided below each question.
f) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
g) Marks may be given for correct working even if the answer is wrong.
h) Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.

FOR EXAMINER'S USE ONLY:

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

Section II

GRAND TOTAL

17	18	19	20	21	22	23	24	TOTAL

Answer ALL QQestions in this section

1. Without using a calculator, evaluate:

$$
\frac{81 / 2-6^{2} / 3 \div 4 / 9}{2 / 5 \text { of } 61 / 4+11 / 4}
$$

2. A tourist visited Kenya with 2500 U.S dollars and changed the U.S dollars into Kenya Shillings at a local bank in Kenya when the exchange rates at the time were as follows:

1 U.S. Dollar
1 Sterling pound

Buying
Shs. 78.45
Shs. 120.25

Selling
Shs. 78.55
Shs. 120.45
(a) How much did he get in Kenya shillings?
(b) While in Kenya, he used Shs. 80,000 and after his stay he converted the remaining amount into sterling pounds. Calculate, to 2 decimal places, the Sterling Pounds that he got.
3. The size of an interior angle of a regular polygon is 5 times the size of its exterior angle. Find the number of sides of this's polygon.
4. Given that in a right angled triangle, $\sin \theta=5 / 12$, find:
5. The column vectors of b, c and d are given as:
$\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \quad\left(\begin{array}{r}4 \\ -2 \\ 3\end{array}\right) \quad$ and $\quad\left(\begin{array}{c}0 \\ 3 \\ -2\end{array}\right) \quad$ respectively and
that $P=b+2 c-d$
Express vector P as a column vector and hence calculate the magnitude of P . (3mks)
6. The diagram below shows the region enelosed by inequalities.

7. The diagonal of a rectangular flower garden is 20 m . If the width of this garden is 8 m , calculate its length and perimeter to 4 s.figures.
(3mks)
8. Expand $(\sqrt{ } 5+\sqrt{ } 3)(\sqrt{ } 5-\sqrt{ } 3)$ hence or otherwise simplify by rationalising the denominator of

$$
\frac{\sqrt{ } 2}{\sqrt{5}+\sqrt{ } 3}
$$

$(\sqrt{5}-\sqrt{ } 3)$ hence o
9. Given the matrix $y=\left(\begin{array}{ll}c & 0 \\ 4 & d\end{array}\right)$
(a) Determine y^{2}
(b) If $\mathrm{y}^{2}=\mathrm{I}$, determine the possible values of c and d .
(2mks)
10. Change 0.24 and 3.04 into fractions hence evaluate:
$\frac{411}{44}(0.24 \div 3.04)$ leaving your answer as a fraction in its simplest form. (3mks)
11. Factorise $x y-z y-x w+z w$ hence simpiplify the expression completely.

12. Pipe Q and R can fill a tank in 20 minutes and 30 minutes respectively. Pipe T can empty the full tank in 40 minutes. Starting with an empty tank, how long does it take to fill the tank if:
(a) All the three pipes are open?
(b) Pipe R is closed after 10 minutes?
13. The gradient of the curve is $a x^{2}+3 x$ at $x=2$ is 8 . Find the value of a.

Determine the acceleration in the sections:
(a) (i) CD
(ii) DE
(b) Calculate the total distance covered.
15. How many terms of the arithmetic sefies $2,5,8,11 \ldots$ May be added to make their sum 301?
16. The diagram $A B C D$ is a parallelogram. Line $B E$ is parallel to line FD. Show that triangles $A B E$ and CDF are congruent. Show that triangles $A B E$ and CDF are congruent.
(3mks)

SECTION III (50 MARKS)
 Answer ONLY five questions in this section

17. The ratio of a spherical balleळ́n increases by 4%. Find the percentage increase in its;
(a) Surface area.
(2mks)
(2mks)
(c) In the figure below, SP is parallel to QR.

(i) Show that triangles SPX and RQX are similar.
(2mks)
(ii) If $P S=8 \mathrm{~cm}, \mathrm{PX}=6 \mathrm{~cm}, \mathrm{SX}=4 \mathrm{~cm}$ and $\mathrm{RX}=3 \mathrm{~cm}$, find the length of RQ and QX.
18. A and B are two points 10 cm apart.
(a) Draw a circle centre A, radius $2<6$ and a circle centre B, radius 4 cm .
(b) Draw a transverse common tangent to the two circles.
(c) Find by calculation the length of a direct common tangent correct to 3 significant figures.
19. A metallic cuboid 8 cm by 10 cm by 4 cm is melted. Half of it is used to make a cylinder of radius 4.2 cm , the remaining is used to make a sphere. Determine using $\pi={ }^{22} / 7$:-
(a) The height and surface area of the cylinder to 1 decimal place.
(b) The radius and surface area of the sphere correct to 1 decimal place. (5mks)
20. (a) Complete the table below to 2 deal $\mathrm{c}^{4^{5^{\circ}}} \mathrm{m}^{\circ}$ al places for
$y=-x^{3}-x^{2}+3 x+1$

x	-4	-3	-2.5	-2							
y				x^{5}	e^{2}	-1.5	-1.0	-0.5	0	0.5	1.0
c^{2}	1.5	2.0									

(b) On the grid provided, draw the graph for $y=-x^{3}-x^{2}+3 x+1$ for $-4<x<3$.
(2mks)

(c) Use the graph to solve the equation $-x^{3}-x^{2}+3 x+1=0$
(2mks)
(d) By drawing a suitable straight line on the graph, solve $-x^{3}-x^{2}+3 x+1=-2 x$
21. The table below shows the masses of opulation randomly chosen in a certain town in kilogrammes.
Mass group
Nứmber of people
0-2
2-5
5-12
3

12-20
12
20-35
24

35-60
30

60-90
20
5
(a) Represent this information on a histogram.
(b) Draw a frequency polygon.
(c) Calculate the mean of the population in this town.
22. A school has two students whose age difference is 9 . Twice the sum of their ages is equal to the age of their teacher.
(a) By letting the age of the yobtinger student be y, write an expression of the:
(i) Age of the elder student.
(ii) Age of their teacher.
${ }^{6}$ (b) If in 19 years time, the product of the ages of the two students is equal to 14 times the age of their teacher;
(i) Form an equation in y and hence determine the present possible age of the younger student.
(ii) Determine the possible age of the elder student in 19 years time.
(2mks)
(iii) Find the possible age of the teacher.
(2mks)
23. A quadrilateral $A B C D$ has the coordigates $A(1,1), B(4,1), C(5,3)$ and $D(2,3)$.
(a) On the graph provided draw the quadrilateral $A B C D$.

(b) $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of $A B C D$ under a transformation matrix represented by: $R=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ write down the coordinates of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and on the same grid draw quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
(c) $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ with coordinates $A^{\prime \prime}(1,-2), B^{\prime \prime}(4,1), C^{\prime \prime}(5,-4), D^{\prime \prime}(2,-7)$ is the image of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ under transformation whose matrix is T. Find matrix T.
(d) (i) On the same grid, draw quadrilateral $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$.
(ii) A single transformation matrix K maps $A B C D$ onto $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. Determine the matrix K .
(2mks)
24. The diagram below represents a community water tank made up of cylindrical and regular hexagonal parts. The diameter and the height of the cylindrical part are 7 m and 5 m respectively. The side of the regular hexagonal face is 2 m and the height of the hexagonal part is 10 m . ($\mathrm{TaRe}^{2} \pi={ }^{22} / 7$)

(a) Determine:-
(i) Cylindrical part.
(ii) Hexagonal part.
(iii) The whole tank.
(b) An identical structure is to be built with a hollow cross-sectional area of $1.5 \mathrm{~m}^{2}$ and mass of 440 kgs . Calculate the density of this structure.

