NAME: \qquad
\qquad
\qquad
\qquad
\qquad

NANDI NORTH SUB-COUNTY JOINT
 EVALUATION 2014

Kenya Certificate of Secondary Education (KCSE)

PHYSICS
PAPER 1
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

(a) Write your Name, Index Number and School in the spaces provided.
(b) Sign and write the date of examination in the spaces provided above.
(c) This paper consists of two sections \boldsymbol{A} and \boldsymbol{B}.
(d) Answer all questions in Section \boldsymbol{A} and \boldsymbol{B} in the spaces provided.
(e) All working MUST be clearly shown.
(f) Mathematical tables and electronic calculators may be used.

Take ' g ' $=10 \mathrm{~m} / \mathrm{s}^{2}$

FOR EXAMINER'S USE ONLY

SECTION	QUESTION	MAX. SCORE	CANDIDATE'S SCORE
A			
	$1-11$	25	
	12	15	
	13	14	
	14	11	
	15	07	
TOTAL SCORE		09	$\mathbf{8 0}$

Answer ALL questions in theis section in the spaces provided

1. Figure 1 shows a reading of a micerometer screw gauge when a metallic spherical ball of mass 60 g is measured by de .

If the micrometer screw gauge had a zero error of -0.01 , what is:
(a) the radius of the sphere?
(b) the density of the metal ball?
2. Fig. 2 shows a simple toy spraying gun.

Briefly describe how sprays of water is produced at point A.
3. A 4 N load causes a 10 cm extension of a spring.

What would be the extension when two such identical springs are connected in parallel and a load of 2 N is applied at their joint lower end?
4. A rocket of mass 5 tonnes initially at rest is launched with a force $2.0 \times 10^{7} \mathrm{~N}$. If the
rocket was in contact with the ground fO 50.2 seconds, what was the take off speed of the ball?
5. (a) What is meant by the centre of gravity of an object?
(b) A uniform metre rule is in equilibrium on a knife-edge placed at 40 cm mark as shown on figure 2 when a weight of 60 N and 40 N is placed at 10 cm and 60 cm mark respectively. Determine the weight of the metre rule.

6. A block of mass 300 g is placed on a frictionless rotating table while fixed to the centre of table by a thin thread. The distance from the centre of the table to the block is 20 cm . If the maximum tension the thread can withstand is 0.375 N , determine maximum angular velocity the table can attain.
7. A student heated some pure water and ${ }^{\circ}$ oticed it boiled at $94^{\circ} \mathrm{C}$ instead of $100^{\circ} \mathrm{C}$. If the thermometer was not faulty, whatis the possible cause for this?
8. What is the function of a lens in a smoke cell experiment?

9: On the grid below, sketch the displacement-time graph that describe a free fall body dropped from height and hits the ground without bouncing.

10. (a) Alcohol is sometimes very advantageous as thermometric liquid over mercury. Give a possible reason.
(b) State the function of a constriction in a clinical thermometer.
11. Describe how the length of a conductor affects its rate of thermal conductivity. (1mk)

SECTION Bo (55 MARKS)

Answer ALL questions in this section in the spaces provided

12. (a) When a bullet of mass 0.02 kg was fired into a block of ballistic pendulum of mass 1.98 kg , the block rose through a height of 15 cm as in the figure below.

(i) The potential energy gained by the block.
(ii) Initial velocity of the bullet.
(b) A trolley of mass 1 kg moving at $1 \mathrm{~m} / \mathrm{s}$ collides head on with a stationary block of wood of mass 2 kg . If the trolley and the block of wood are stuck together and moved a distance of 0.1 m before coming to rest, find the;
(i) The velocity after collision.
(ii) Kinetic energy after collision.
(iii) The frictional force.
(c) A tape attached to a moving trolleysis run through a ticker timer. A section of it appeared as shown below.

If the frequencey of ticker timer is 50 Hz , calculate the acceleration of trolley. (3mks)
(d) The figure below shows a velocity time graph for an object in water.
(i) On the same axes, sketch a velocity-time graph for the same motion.

(ii) Describe the motion of the body.
13. (a) Explain why bodies in circular motion undergo acceleration even when their speed is constant.
(b) A particle moving along a circular path of radius 5 m describes on arc length 2 m every 2 seconds. Determine:-
(i) Its angular velocity.
(ii) Its periodic time.
(c) A stone of mass $40^{\circ} \mathrm{g}$ is tied to the end of a string 50 cm and whirled in a vertical circle at 2 reviolutions per second. Calculate the maximum tension in the string.
(d) The figure below shows a container with small holes at the bottom in which wet clothes have been put.

When the container is whirled at high speeds, it's observed that the clothes dry faster. Explain how the rotation of the container causes the clothes to dry faster.
(3mks)
(e) State two factors affecting centripetal force.
14. (a) A solid weighs 40 N in air, 15 N when totally immersed in water and 20 N when fully immersed in liquid X. Determine the relative density of liquid X.
(2mks)
(b) The figure below shows a bulb hydrometer.

(i) State the principle used in the hydrometer.
(ii) Explain why:
I. The stem is narrow
II. The bulb is wide.
(iii) The lead shots are placed at the bottom.
(c) A simple hydrometer is set-up with the test tube partially filled with lead shots. Its mass is 10 g and its cross-sectional area is $0.5 \mathrm{~cm}^{2}$, determine the length of the tube immersed in brine of density $1.20 \mathrm{~g} / \mathrm{cm}^{3}$.
(d) State two examples where a hydrometer is commonly used in practical life.
(2mks)
15. (a) The figure below represents a tgahsparent glass sealed on one end and containing mercury. The setw was used to verity Boyle's law.

(i) $e^{E_{8} e^{y^{5}}}$ lain why the gas should be dry.
(ii) Describe how the set up can be used to verify Boyle's law of gases. (3mks)
(iii) Sketch a graph to represent the results that would be obtained.

(iv) Use Kinetic theory of gases to explain:
I. Boyle's law
II. Why presssure of gas increases with temperature.
16. (a) Distiaguish between heat capacity and specific heat capacity.
(b) The figure below shows a set up that may be used to determine a specific heat capacity.

Outline the measurements that should be taken in the experiment. (2mks)
(i) Explain how the measurements taken in (i) may be used to determine the specific heat capacity.
(ii) State one precaution one would take in modifying the set up for accurate results.
(c) An electric heater rated 2 KW is used to heat a 400 g aluminum container filled with 1 kg of water. Assuming no heat is lost to surroundings; calculate the time taken to raise the temperature of the water by $10^{\circ} \mathrm{C}$. Take specific heat capacity of aluminium is $900 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$, and that of water is $4200 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$.

