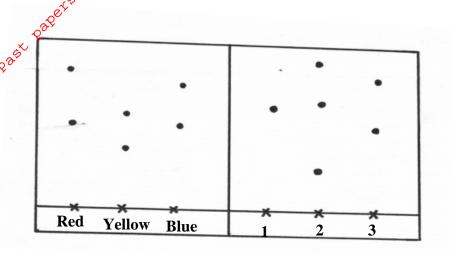
Name	Index No:
233/1	Candidate's Signature
CHEMISTRY PAPER 1	Date:
THEORY	
JULY/AUGUST 2014 TIME: 2 HOURS	
Name	
Qati Pager	
ACSÉ V	NTY JOINT EVALUATION EXAM of Secondary Education (K.C.S.E.) 233/1 Chemistry
NYAMIRA SUB-COUN	NTY JOINT EVALUATION EXAM
Kenya Certificate	of Secondary Education (K.C.S.E.)
Ø′	233/1
	Chemistry
	Paper 1

Paper 1 2 Hours

INSTRUCTIONS TO CANDIDATES


- Write your **name** and **index number** in the spaces provided above
- **Sign** and write the **date** of examination in the spaces provided.
- Answer *all* the questions in the spaces provided.
- Mathematical table and silent electronic calculators may be used.
- All working **must** be clearly shown where necessary.

FOR EXAMINERS USE ONLY

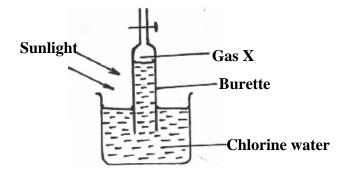
Question	Maximum score	Candidate's
		score
1-28	80	

This paper consists of 11printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

2. A chromatogram of three dyes and three inks is shown below. Study it and answer questions that follows

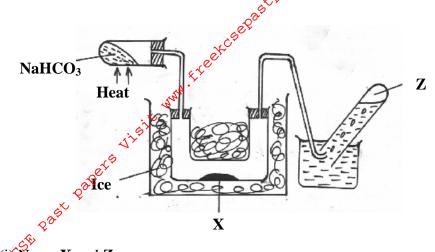
(i) Identify dyes present in ink 3 (1mk)

(ii) Identify the most soluble dye (1mk)


3. Magnesium burns with a brilliant flame in air forming two main products X and Y, write the equations for the formation of:

(i) X (1mk)

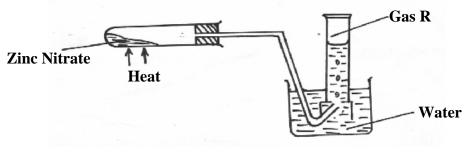
.....


(ii) Y (1mk)

4. An experiment was set up using chlorine water as shown below

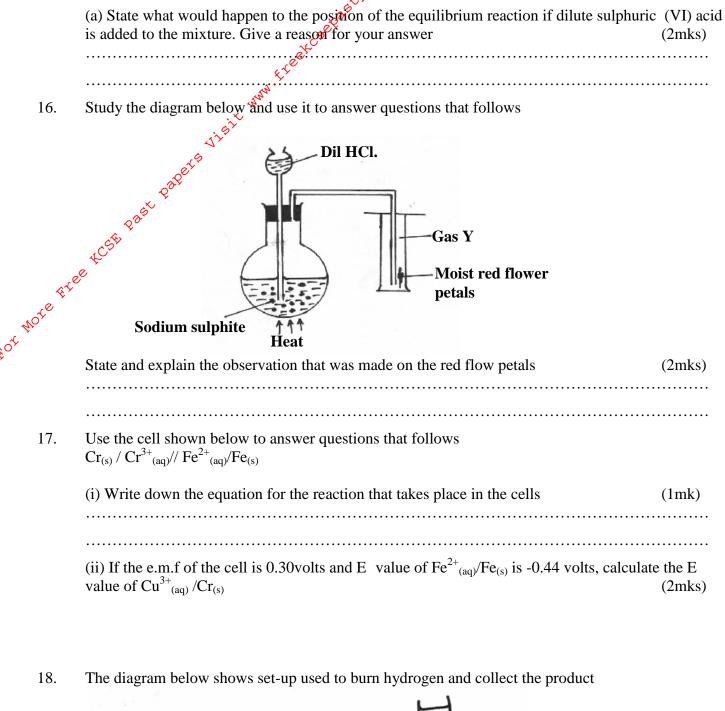
(i) Identify gas 2	×\$ ⁶	(1mk)
(ii) Write an equ	ation for the production of gas X	(2mks)
	₹ [*]	
5. (a) Explain how	Pentane can be differentiated from Pentene	(2mks)
<u>e</u>	Ç [†]	
(b) Name the fo	llowing organic compounds	
(i) CH3CHCH ₂		(1mk)
(ii) CH ₂ CH ₂ CH ₂ CH	O 	(1mk)
Blue litmus pape	100	CIOW
(i) Predict the ch	nanges that would be seen in the litmus papers	(1mk)
(ii) Explain you	answer in (i) above	(2mks)
7. The isotopes of	an element X-16 and X-18 occur naturally in the ratio of 9:1	respectively. Calculate
the relative aton	nic mass of X	(2mks)

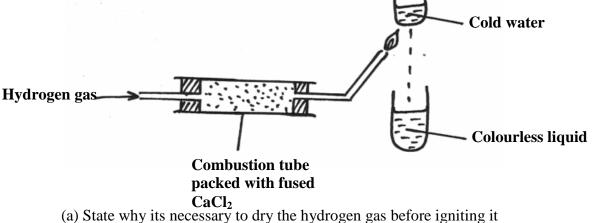
8. The diagram below represents the thermal decomposition of sodium hydrogen carbonate



Name X and Z	(Imk)
₂ 0	
~	

(ii) Write an equation for the decomposition	(2mks)
	• • • • • • • • • • • • • • • • • • • •


- 9. Describe how you can distinguish between solutions of Sodium Carbonate and sodium hydrogen carbonate given magnesium chloride solutions (3mks)


 10. (a)State Graham's law of diffusion (2mks)
 - (b) It takes 245 seconds for nitrogen to diffuse through a membrane. How long will it take an equal volume of Carbon (IV) oxide to diffuse through the same membrane? (N=14,C=12,O=16)(2mks)
- 11. Study the diagram below and use it to answer questions that follows

(i) Identify gas R (1mk)

				com		
				ers .		
	(iii) Explain t	the nature of the	solution formed	in water after someting	nes	(2mks)
		••••	<u>, 6</u> 0` 			
			, <u>, , , , , , , , , , , , , , , , , , </u>			
12.	Explain the fo	ollowing observa	ations			
	(i) electrical of	conductivity of n	netals decreases	with an in increase in	temperature	(2mks)
		,e ^Ç				
	······································	•••••				• • • • • • • • • • • • • • • • • • • •
	(ii) Ionization	n energy decrease	es down the grou	up in group I		(2mks)
	4C5V					
<u> څ</u> ې	e [©]					
13.	The table belo	ow gives some p	hysical propertion	es of substances A,B a	and C. study it and	l answer the
i_{O}	questions that	t follow				
	Substance	Colour	M.P (oC)	Solubility in water	Electrical condu	ctivity
					Solid	Liquid
	A	Black	114	Insoluble	Non conductor	Non-conduct
	В	Black	1326	Soluble	Non conductor	Decompose
	С	Black	3730	Insoluble	Conducts	Conducts
	(a) Identify the	ne substance that	is			1
	(i) Giant ato	omic structure				(1mk)
	(ii) Ionic str	ructure				(1mk)
	(b) Which su	bstance would di	issolve in organi	c solvent?		(2mks)
14.	The electroni	c configuration of	of ions X^{2+} and Y^{2+}	Y^{-} are 2.8 and 2.8 resp	ectively	
	(a) State the group and period in which the elements belongs to				•	(2mks)
	X				, ,	
15.				between chromate io	ns Cr ₄ 2- and dichro	omate ions
	$Cr_2O_7^{2-}$	100 Topiosoni		2 2 50 COM CIM CIMALO 10.	014 and drein	

.....

(1mk)

(2mks)

(1mk)

(2mks)

······o ^{et}	
(b) (i) State the precaution that must be taken before igniting the hydrogen	
	•••••
(ii) State two uses of hydrogen gas	(1mk)
······································	
15.22 g of the oxide of metal X was formed when 10.64g of X reacted with exces Determine the formula of the metal oxide X. (X=56,O=16)	s oxygen. (3mks
The apparatus shown below was set-up to investigate the properties of a simple co	ell
The apparatus shown below was set-up to investigate the properties of a simple co-	
Iron — Zinc Beaker — Acid	
(a) On the diagram, indicate the direction of flow of electrons(b) Explain the observation in (a) above	(1mk) (2mks
M grams of a radioactive isotope decayed to 5 grams in 100 days. The half-life o	f the isotope is
days. (i) What is meant by half-life of the isotope is 25 days	(1mk)
(ii) Calculate the initial mass of the radio active isotope	(2mks
Concentrated hydrochloric acid is used for removing oxides form metals (pickling	g). Explain wh
concentrated nitric (V) acid cannot be used for the same purpose	(2mks
The diagram shown below illustrate the process of softening hard water using the	permutit meth
Water in →=====	

	(a) State the cause of the two types of hardness		(2mks)	
	a Que	, Q. T.		
	21 X T T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(0 1)	
	and the second	the hardness can be removed		
24.	(a) Determine the quantity of electricity re	equired to deposit 0.16g of copper metal from		
	sulphate solution. (Qu=64, Faraday constant)			
	Ceto.			
² ¢e & ₂	(b) If 0.16g of copper in (a) above is depositional through the electrolyte	osited in one minute, determine the amount of c	eurrent (2mks)	
25.	In the extraction of aluminum, bauxite is	dissolved in hot concentrated sodium hydroxid	de before	
	carbon (IV) oxide is passed through the solution (a) State the role of sodium hydroxide in the process			
	(b) State the affect of bubbling CO ₂ into t	he solution	(1mk)	
26.		ic oxides fit into the general family of oxides		
	Acidic oxide Basic oxide			
	(i) State the name given to the type of oxides that would be placed in the shaded region			
	(ii) Give the name of any oxide that could	l be placed in the shaded region	(1mk)	
27.	The table below shows the first ionization energies of elements B and C			
	Element	Ionization energy KJ/mol 494		
	B C	736		
	(i) What is ionization energy		(1mk)	
	(1) What is formzation energy		(1111K)	

	**. C	
	(ii) What do the values suggest about reactivity of B compound to that of C?	(2msk)
	C. C	
28.	State two factors which determine the stability of an isotope	(2mks)
	and a fee	
	ditaix "	
	,ee kcsh Past Papers Visit	
	¢cisto de la companya del companya de la companya del companya de la companya de	
\$7		