	c ^{off}
Name	e ^{st⁵} Index No:
233/3 CHEMISTRY PAPER 3 PRACTICAL JULAY/AUGUST 2014 TIME: 2 ¹ / ₄ HOURS	Candidate's Signature Date:
NVA MIPA SUB_COUNTY I	ίοιντ έναι πάτιον έναμ

NYAMIRA SUB-COUNTY JOINT EVALUATION EXAM For Note Free tc.

Kenya Certificate of Secondary Education (K.C.S.E.)

233/3 Chemistry Paper 3 $2\frac{1}{4}$ hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided. •
- Sign and write the date of examination in the spaces provided. •
- Answer *all* the questions in the spaces provided in the question paper. •
- You are not allowed to start working with the apparatus for the first 15 • minutes of the 2 1/4 hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you need.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used. •

For examiners use only

Question	Maximum Score	Candidate's Score
1	12	
2	7	
3	21	
TOTAL	40	

This paper consists of 4printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. You are provided with:

Aqueos hydrochloric acid, solution A Solution B containing 6.3g of dibasic acid $H_2C_2O4.2H_2O$ per litre Aqueous sodium hydroxide, solution C Phenolphthalein indicator solution

You are required to;

(i) Standardize the sodium hydroxide solution C

- (ii) Use the standardized solution C to determine the concentration of A
- (iii) React the hydrochloric acid, solution A with metal M and determine the mass of 6cm of metal M

√^{0⁻}

Fill the burette with solution B

Pipette 25.0cm³ solution C into a conical flask. Add 2 drops of phenolphthalein indicator. Titrate solution B against solution C.

Record your results in table I below. Repeat the procedure and fill the table below Table I

	Ι	Π	III
Final burette reading (cm ³)			
Initial burette reading(cm ³)			
Titre volume (cm ³)			

(a) What is the average volume of solution B used	$(3 \frac{1}{2} \text{ mks})$ (1mk)
(b) Calculate:	•••••
(i) the concentration of the dibasic solution B in moles per litre	(1mk)
(C=12,H=1,O=16)	

(ii) the concentration of the Sodium hydroxide solution C in moles per litre (1mk)

Procedure II

Using a 100cm3 measuring cylinder, measure 90cm3 of distilled water and place it into a 250cm3 beaker and then 1dd 10cm3 of solution A

Mix the solution well and label it D Fill a burette with solution D Pipette 25.0cm3 of solution C into a conical flask Titrate using phenolphthalein indicator

Table II

	Ι	Π	II
Final burette reading (cm3)			
Initial burette reading (cm3)			
Volume of tire volume (cm3)			

- (a) What is the average volume of solution Doused?
- (b)(i) Calculate the concentration of the diluted hydrochloric acid, solution D in moles per litre(1mk)
 - (ii) Determine the concentration of the original hydrochloric acid, solution A in moles per Litre $(1 \frac{1}{2} \text{ mks})$

Procedure III

Measure exactly 6cm of metal M provided.

Measure 49cm3 of solution A and transfer into a clean boiling tube

Wrap the boiling tube with tissue paper

Measure the temperature of this solution and record in table III below

Simultaneously place the metal M into solution A in the boiling tube and start the stopwatch.

Record the temperature of the contents in the boiling tube after every 30 seconds in the table below ALC,

	Time Temp (°c)	0	30	60	90	120	150	180	210	240	270	300
(i) Plot a graph of temperature against time .												
\$ ⁰¹	.,	I		1	L							

(i) Plot a graph of temperature against time

																								_		
Jerrore and an entropy of the second second														111		_			<u> </u>							
				1 1 1				111					1 1 1	111			1		11			11	11			
				1 1 1																TT	1	TT	1	1	1	
					++	++	+	-++-					+++-				++		++-	++	++	++	+	++	++	
			-+-+-++		· · · · · · ·	+			_				+ + +	+ + + +			+		+	+	++	+	+-+-	+	4	
													111	1 1 1			1						1.1			
				111																		TT				\square
																	++			++	tt	+-+	+++-	+	+	tt
			-+-+-+		++	++		-++-				++-	+-+-+-	++++		-++-	++		++-	++	++	++	+-+	+	+	++
														11												
				1 1 1										1 1 1									1 :			
				111			111	111					TIT	111	- T T		T T T		1 1	TT	11	TT	11	TT	T T	T T
}			-4-4-4-4		+-+-+-	+-+-+-	+-+			┝╺┾╸╍╄╸╼┦				+-4-4	-4-4-	-+-+-	+-+-+	-+-+-		-+-+-	+			÷		
•					L												+						_	J	J	L
			1111	1 1 1			1 !	1 1 1					1 1 1	1 !	11			11		TT		TT	1 !	1	1 1	
																	+			+-+	++-	+-+	+	+	+	
			-+-+-+		++	++	++++	+-+-+					+-+-+-	+-+-+		-++-	+-+		+-+-	++	++	+-+	+	++	+	++
													1 1 1													
				1																						
																	1 1 1			11		11	11	1	1	
<u></u>					+++	+	++++	-++-				++-	+++-	+-+-+		-++-	++		++-	++	++	+-+	+-+-	++	++	++
i + + + + +			+++		↓ ↓	₊	+ • •						+	+++		-+	++		++-	-++	++	-+		+	+	++
				111			111						111				1	11					1.1			
									11				TIT				TT		TT	TT	T	TT	11	T	T	T T
*				-+-+-+-	+-+-+-	+-+-+-	+-+	-+-+-+						+-+-+	-+-+-	-+-+-	+-+-+	-+-+-	+-+-	-+-+-	+	• + - + -	+-+-	÷		
i		· · · · · · · · · · · · · · · · · · ·			↓	↓	+++						+-++-			-+-+-	+		++-	++	++	4		+	+	++
														1 1					1.1		1	1	1.1			L
				1		1 1 1 1					1	1	1 0 0		1.1	1 T			1 T	1 1	1 T	1	1.1	1 T		ΙÍ
					ttt	+ + + -	+++	+++					++++	+ + +		+++	+-+-+	-+-+-	1 1	+-+	1-1-	+-+-	1	+	+	tt
			-+-+-+		++	++	+++	++++			-+-+	++-	+++++	+++		++	+-+		+-+-	++	++	++	+	+	+	++
													111													
				1			111				T					T			IΤ	T	ΙT	IΓ	17	IΠ		ΙÍ
						1 1 1							++++	111		-+-+-	+-+-		1 1	++++-	1-1-	+-+	11	+	+-+	tt
			-+-+-+		++	+-+-+	+++	++++			-+-+	++-	+-+-+-	+ + +		-+-+-	+-+		+-+-	+-+	+-+-	+-+	+	++	+	++
				_		<u> </u>											+		+	+	I	4-4				
				i Ll			Lil							111									1			
						TT							TTT			11		11		TT		TT	T	T	T	
			-4-4-4-4	• • • • • • • •	+-+-+-	+-+-+-	+-+-+	-+-+-+						+-+-+	-+-+-	-+-+-	+-+-+	-+-+-	+-+-							
					II	L								+-+-+			+		++-					_		↓ ↓
				1 1 1										111			1 1 1	11					1.1			
			TTTT	TT		TTT							TIT		11		TTT		TT	TT	TT	TT	T	TT	T	T T
					++												+-+			+-+		+-+	+ + + - + - + - + - + - + - + - + - + -			
					↓↓↓									++		-++-	++		++-	++	++	++		+	+	
							1 i							1 i			1	11	1			11	<u> </u>			<u> </u>
				1 1 1							T	IT	IT			T		17	IΤ	T		IΓ	11	IΤ	1 T	ΙÍ
					1 1 1		111							11		-+-+-					1-1-	1	11			rt
				1 1 1			1 I.I.	_					+	++			++		++-	++	++				+	+
	_								_								+++		++	-++		+				
							+++				-									tt						
							Ħ						+++			++		#	++			++-	Ħ			
																	<u></u>		++.	<u>+</u> +-		<u>+</u> +-		#		
								++++												÷		++-				
																	+-+-									
																	+-+-									

(ii)From the graph, determine the highest temperature change

(iii) Calculate the heat of reaction in this experiment

(1mk)

(1mk)

(1mk)

(3mks)

(2mks)

(iv) Given that the molar heat of reaction between metal M and solution A is -1600kJmol⁻¹, determine the number of moles of metal Mused (1mk)

(v) Determine the mass of metal M used in this experiment (RAM=24) (1mk)

You are provided with solid E. carry out the following tests and write your observations 2. and inferences in the spaces provided

a) Place all of solid E into a boiling tube. Add about 12cm3 of distilled water and shake thoroughly. the mixture into another boiling tube. Retain the filtrate for use in 2(b) below. Dry the residue using pieces of filter papers

(i) Trapsfer half of the dry residue into a dry test tube. Heat the residue strongly and test any gas produced using a burning wooden splint

Observations	Inferences
1mrk	1mrk

FOT NOTE FTEE (ii) Place the other half of the reside in a dry test-tube. Add 3cm3 of 2M hydrochloric acid. Retain the mixture for test (iii) and (iv) below

Observations	inferences
(½ mk)	(½ mk)

(iii) To 2cm³ of solution obtained in a(ii) above, add 2cm³ of Potassium Iodide solution Observations inferences

(½ mk)	

(iv) To another 2cm³ of solution obtained from a(ii) above, add 4cm3 of aqueous ammonia drop wise till in excess

Observations	Inferences
(¹ / ₂ mk)	(½ mk)

(b) Divide the filtrate obtained into 5 portions

(i) To the first portion of the filtrate obtained in (a) above, add 3cm³ of aqueous ammonia (excess) Observations inferences

 $(\frac{1}{2} \text{ mk})$

 $(\frac{1}{2} \text{ mk})$

(ii) To the second portion of the filtrate add 2 drops of sodium sulphate solution provided

ч^С

 $(\frac{1}{2} \text{ mk})$

		COL									
	Observations	R ^{ogers} . Inferenc	es								
	<u>(1/2 mk)etc</u> = 200		1/2 mk)								
	(iii) To the third portion of the filtrate, ad Observations	1 2 drops of Barium nitrate Inferenc	e solution provided es								
	⁴ ^{1,6} ^{1,1} (¹ /2 mk)	(½ mk)									
	(iv) To the fourth portion of the filtrate, as Observations	d 2cm3 of hydrochloric ad Inferenc	cid provided es								
	e t c st 20 ² (½ mk)	(½ mk)									
for wore fr	(v) To the fifth portion of the filtrate add t Observations	wo drops of Lead (II) nitra inferenc	ate solution and heat to boil es								
	(½ mk)	(½ mk))								
3.	(I) You are provided with solid F. Carry out the tests below and record your observations and inferences in the spaces provided(a)(i) Using a metallic spatula, heat half of solid F in a non-luminous burnsen burner flame for som time then remove when it ignites										
	Observations	Inferenc	es								
	(1mk)	(1mk)									
	(ii) Put a half spatula endful of solid F into a boiling tube. Add about 10cm ³ of distilled water and shake vigorously										
	Observations	inferenc	es								
	(½ mk)	(½ mk)									
	 (b) Divide the resulting solution form a(ii) above (i) To the first portion, dip a piece of universal indicator paper and determine Observations inferences 										
	(½ mk)	(½ m	k)								
	(ii) To the second portion, add two drop shake vigorously	of acidified potassium Ma	anganate (VII) solution and								
	Observations	Inferenc	es								
	(½ mk)	(½ mk)									

		rs. con
	(c) Put half spatula end ful of solid F into a boiling tube and add 5 drops of ethanol followed by 2 drops of concentrated sulphurice VI) acid. Warm the mixtures	
	observations cherric	inferences
	(¹ /2 mk)	(¹ / ₂ mk)
	Divide the liquid into (three portions) (i) To the first add 2 drops of acidified Potassium Manganate (VII) solution Patrix Observations Inferences	
\$r	(¹ / ₂ mk)	(¹ /2 mk)
for note	(ii) To the second portion, dip both red and blue litmus papers provided Observations Inferences	