233/3
CHEMISTRY
PAPER 3
PRACTICAL
JULAY/AUGUST 2014
TIME: 2 ¼ HOURS

Candidate's Signature
Date:
\qquad
\qquad

NYAMIIRA SUB-COUNTY JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

$$
233 / 3
$$

Chemistry
Paper 3
$21 / 4$ hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided.
- Sign and write the date of examination in the spaces provided.
- Answer all the questions in the spaces provided in the question paper.
- You are not allowed to start working with the apparatus for the first 15 minutes of the $21 / 4$ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you need.
- All working must be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used.

For examiners use only

Question	Maximum Score	Candidate's Score
$\mathbf{1}$	$\mathbf{1 2}$	
2	7	
3	21	
TOTAL	$\mathbf{4 0}$	

1. You are provided with:

Aqueos hydrochloric acid, solution A
Solution B containing 6.3 g of didasic acid $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O} 4.2 \mathrm{H}_{2} \mathrm{O}$ per litre
Aqueous sodium hydroxide, sølution C
Phenolphthalein indicator ${ }^{\circ}$
You are required to $\overline{j-y^{2}} \bar{y}^{x}$
(i) Standardize whe sodium hydroxide solution C
(ii) Use the staindardized solution C to determine the concentration of A
(iii) Reackthe hydrochloric acid, solution A with metal M and determine the mass of 6 cm of metal M e^{2}
Progedure I
Fifl the burette with solution B
Pipette $25.0 \mathrm{~cm}^{3}$ solution C into a conical flask. Add 2 drops of phenolphthalein indicator. Titrate solution B against solution C .

Record your results in table I below. Repeat the procedure and fill the table below Table I

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Titre volume $\left(\mathrm{cm}^{3}\right)$			

(a) What is the average volume of solution B used
(b) Calculate:
(i) the concentration of the dibasic solution B in moles per litre

$$
(\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16)
$$

(ii) the concentration of the Sodium hydroxide solution C in moles per litre

Procedure II

Using a 100 cm 3 measuring cylinder, measure 90 cm 3 of distilled water and place it into a 250 cm 3 beaker and then 1 dd 10 cm 3 of solution A

Mix the solution well and label it D
Fill a burette with solution D
Pipette 25.0 cm 3 of solution C into a conical flask
Titrate using phenolphthalein indicator
Table II

	I	II	II
Final burette reading $(\mathrm{cm} 3)$			
Initial burette reading $(\mathrm{cm} 3)$			
Volume of tire volume $(\mathrm{cm} 3)$			

(a) What is the average volume of solution Doused?
(b)(i) Calculate the concentration of thealiluted hydrochloric acid, solution D in moles per litre(1 mk)
(ii) Determine the concentration original hydrochloric acid, solution A in moles per Litre

Procedure III
Measure exactly $6 c \mathrm{ch}$ of metal M provided.
Measure 49 cm 3.69 solution A and transfer into a clean boiling tube
Wrap the boibrig tube with tissue paper
Measure the temperature of this solution and record in table III below
Simultaneously place the metal M into solution A in the boiling tube and start the stopwatch.
Record the temperature of the contents in the boiling tube after every 30 seconds in the table below

(i) Plot a graph of temperature against time

(ii)From the graph, determine the highest temperature change
(iii) Calculate the heat of reaction in this experiment
(iv) Given that the molar heat of reaction between metal M and solution A is $-1600 \mathrm{kJmol}^{-1}$, determine the number of moles of metal MPused

(v) Determine the mass of metal M used in this experiment (RAM=24)

2. You are provided wittr solid E. carry out the following tests and write your observations and inferences in the spaces provided
a) Place all of sofich E into a boiling tube. Add about 12 cm 3 of distilled water and shake thoroughly. the mixture into another boiling tube. Retain the filtrate for use in 2(b) below. Dry the residue using pieces of filter papers
(i) Transfer half of the dry residue into a dry test tube. Heat the residue strongly and test any gas produced using a burning wooden splint

Observations	Inferences		
1 mrk		1 mrk	

(ii) Place the other half of the reside in a dry test-tube. Add 3 cm 3 of 2 M hydrochloric acid. Retain the mixture for test (iii) and (iv) below

Observations	inferences	
	$(1 / 2 \mathrm{mk})$	$(1 / 2 \mathrm{mk})$

(iii) To $2 \mathrm{~cm}^{3}$ of solution obtained in a(ii) above, add $2 \mathrm{~cm}^{3}$ of Potassium Iodide solution Observations inferences

$(1 / 2 \mathrm{mk})$	$(1 / 2 \mathrm{mk})$

(iv) To another $2 \mathrm{~cm}^{3}$ of solution obtained from a(ii) above, add 4 cm 3 of aqueous ammonia drop wise till in excess

Observations
($1 / 2 \mathrm{mk}$)

Inferences

($1 / 2 \mathrm{mk}$)
(b) Divide the filtrate obtained into 5 portions
(i) To the first portion of the filtrate obtained in (a) above, add $3 \mathrm{~cm}^{3}$ of aqueous ammonia (excess) Observations inferences
\qquad
(ii) To the second portion of the filtrate add 2 drops of sodium sulphate solution provided

Observations
$(1 / 2 \mathrm{mk}) e^{4}$

Inferences

($1 / 2 \mathrm{mk}$)
(iii) To the third portion of the filtrate, add 2 drops of Barium nitrate solution provided

Inferences
($1 / 2 \mathrm{mk}$)
(iv) To the fogith portion of the filtrate, add 2 cm 3 of hydrochloric acid provided

Observations
Inferences
($1 / 2 \mathrm{mk}$)
($1 / 2 \mathrm{mk}$)
(v) To the fifth portion of the filtrate add two drops of Lead (II) nitrate solution and heat to boil

Observations inferences
($1 / 2 \mathrm{mk}$)
($1 / 2 \mathrm{mk}$)
3. (I) You are provided with solid F. Carry out the tests below and record your observations and inferences in the spaces provided
(a)(i) Using a metallic spatula, heat half of solid F in a non-luminous burnsen burner flame for some time then remove when it ignites

Observations
(1mk)
Inferences
(1mk)
(ii) Put a half spatula endful of solid F into a boiling tube. Add about $10 \mathrm{~cm}^{3}$ of distilled water and shake vigorously

Observations
inferences
($1 / 2 \mathrm{mk}$)
(b) Divide the resulting solution form a(ii) above
(i) To the first portion, dip a piece of universal indicator paper and determine its PH

Observations	inferences
$(1 / 2 \mathrm{mk})$	$(1 / 2 \mathrm{mk})$

(ii) To the second portion, add two drop of acidified potassium Manganate (VII) solution and shake vigorously

Observations	Inferences
$(1 / 2 \mathrm{mk})$	$(1 / 2 \mathrm{mk})$

(c) Put half spatula end ful of solid F intox 3 boiling tube and add 5 drops of ethanol followed by 2 drops of concentrated sulphuric VI) acid. Warm the mixtures

(II) You are provided ${ }^{2}$ with liquid G. Use it to carry out the following tests and record your observations and infërences below.
Divide the liquid into (three portions)
(i) To the first add 2 drops of acidified Potassium Manganate (VII) solution

Observations
Inferences ($1 / 2 \mathrm{mk}$)
(ii) To the second portion, dip both red and blue litmus papers provided Observations

Inferences

