	, c ^o	•
Name		Index No:
233/1	at the second	Candidate's Signature
PHYSICS 1	eeço	Date:
PAPER 1	Aco .	
THEORY	est ^e	
JULY/AUGUST 2014	W.	
TIME: 2 HOURS	NW	
	. X/	

~

Papers Visit NYAMIRA SUB-COUNTY JOINT EVALUATION EXAM FOT NOTE Free ACST

Kenya Certificate of Secondary Education (K.C.S.E.)

232/1 **Physics** Paper 1 2 hours

INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided above.
- Answer all the questions both in section A and B in the spaces provided below each question
- All workings **must** be clearly shown; marks may be awarded for correct steps even if the answers are wrong.
- Mathematical tables and non programmable silent electronic calculators may be used. • (Take acceleration due to gravity $g = 10ms^{-2}$ Density of water $1g/m^{-3}$)

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
Section A	1-13	25	
Section B	14	10	
	15	06	
	16	12	
	17	09	
	18	09	
	19	11	
	TOTAL	80	

For examiners use only

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

Figure 1 below shows a section of a bureful containing some water 1.

Determine the reading on burrette if four (4) drops of water each of volume 0.5cm³ are added(2mks)

FOT NOTE Free KCSE

2. A uniform wooden plank weighing 50N and 5m long is suspended by two ropes A and B, 1.5m apart. A is 2m from one end and B is 1.5m from the other end as shown in figure 2 below. A concrete block of weight 100N is suspended from the centre of the plank

Calculate the tension T_A in string A

(3mks)

3. A steel sphere released in a tall transparent water jar attains a constant velocity after a while. The same sphere released in air falls at a constant acceleration. Explain with a reason the difference in its motion in water and in air (2mks)

4. The stability of a body can be increased by increasing the base area and lowering its centre of gravity. State one way of lowering its centre of gravity. (1mk)

A body of mass 25kg moving with uniform accelaration has an initial momentum of 60kgm/s and after 10s the momentum is 90kgm/s. calculate the acceleration of the body (3mks)

To what temperature must 2,000cm³ of a gas at 27°C be heated at constant pressure in order for its

7. A load was raised using the system shown below. The system was then modified as in (b) and used to raise the same load

5.

6. Fr

volume to increase to 25000cm³?

(3mks)

- 9. On increasing the temperature of a fixed masser of a gas its pressure was noted to increase. Explain (2mks)
 10. The figure 4 below shows a set used in a physics demonstration
 10. The figure 4 below shows a set used in a physics demonstration
 10. The figure 4 below shows a set used in a physics demonstration
 10. The figure 4 below shows a set used in a physics demonstration
 10. The figure 4 below shows a set used in a physics demonstration
 10. The figure 4 below shows a set used in a physics demonstration
 10. The figure 4 below shows a set used in a physics demonstration
 10. The figure 4 below shows a set used in a physics demonstration
 11. A 60 litre giant density bottle weighs 100N when empty. What will be its mass when filled with
 - 12. Figure 5 below is a hydraulic jack system

liquid W whose density is 0.72g/cm3? (g=10N/kg)

(a)Name the parts labeled W,X and Y

(3mks)

(3mks)

	CON CON	
	(b) Briefly explain how the device may be used to raise a load at the position shown $\mathcal{L}^{\mathcal{A}}$	(3mks)
	et che par	••••••
	(c) Part W is left open to the atmosphere as indicated. Explain $\frac{1}{\sqrt{2}}$	(2mks)
	V ^{16¹}	
	(d) State two ways by which the mechanical advantage of the device may be increased	(2mks)
	4.25°	
A.L.C	(e) One such hydraulic brake system was used to lift a car whose mass was 1200kg. The	cross
rot More	sectional area of Q was 5000cm^2 and that of P was 5cm^2 . Determine the force exerted on piston	the pump (3mks)
*		•••••
		•••••
13.	(a) Define specific latent heat of fusion	(1mk)
	(b) State two factors which affect freezing point of ice	(1mk)
		•••••

(c) Figure 6 below illustrates an experiment in which electrical energy is used to determine specific latent heat of fusion

	ers.com	
	(i) Other that time, state other measure measurements that would be used to determine heat Q absorbed by ice in unit time $e^{e^{i t}}$	e the quantity if (2mks)
	Mart L	
	(ii) Complete the circuit to show connection of the essential circuit components	(3mks)
	(iii) Explain how to proceed and determine the value of L _{f1} , the specific latent heat of Ice	fusion of (3mks)
\$ ^r	(d) In a similar experiment, the following results were obtained when heat was switch minutes	ed on for 5
More	Voltmeter reading =6.0V	
\$ ⁰ ^v	Ammeter reading =1.25A	
	(i) Calculate the power rating of the heater	(3mks)
	(ii) If by the end of the experiment, 200g of water at 0oC was collected, determine the	e latent
	heat of fusion of ice	(2mks)
14.	(a) State Archimedes principle.	(1mk)
	(b)Figure 7 below shows a block of mass 25g and density 200kgm-3 submerged in a c while suspended from a horizontal beam by means of a thread. A mass of 2g is suspen beam as shown	certain liquid nded from the
	tocm 30cm	

d

259

29

e.com	
(i) Determine the upthrust force acting on the block	(3mks)
(ii) Calculate the density of the liquid	(3mks)
Jisit	
o apet a	

(c) Figure 8 shows a piece of cork held with a light thread attached to the bottom of a beaker. The beaker is filled with water

(i)Indicate and label on the diagram the forces acting on the cork	(3mks)
(ii) Write an expression showing the relationship between the forces	(1mk)

(d) A solid displaces 8.5cm3 of a liquid when floating and 11.5cm3 when fully submerged in the liquid. The density of the solid is 0.8g/cm3. Determine the upthrust on the solid when floating(3mks)

15.	(a) Define angular velocity	(1mk)

(b) The diagram below fig.9 shows an object of mass 2.0kg being whirled in a vertical circle of radius 0.8, at a uniform speed of 50m/s

\$C

	A A B A B CON CON CON CON CON CON CON CON	
	(i) The centripetal force on the object	(3mks)
	.40 ⁻⁷	
A.L.	<i>o</i>	
MOTO	(ii) The tension in the string when the object is at A	(3mks)
\$ ⁰ +		
	(iii) The tension in the string when the object is at B	(3mks)
	(c) The speed of rotation is gradually increased until the string snaps. At what point is the	e string
	likely to snap? Explain	(3mks)