$\qquad$

233/1
PHYSICS 1
PAPER 1
THEORY
JULY/AUGUST 2014
TIME: 2 HOURS

Candidate's Signature $\qquad$
Date:

## NYAMIRA SUB-COUNTY JOINT EVALUATION EXAM

## Kenya Certificate of Secondary Education (K.C.S.E.)

232/1
Physics
Paper 1
2 hours

## INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided above.
- Answer all the questions both in section $\boldsymbol{A}$ and $\boldsymbol{B}$ in the spaces provided below each question
- All workings must be clearly shown; marks may be awarded for correct steps even if the answers are wrong.
- Mathematical tables and non programmable silent electronic calculators may be used.
(Take acceleration due to gravity $g=10 \mathrm{~ms}^{-2}$ Density of water $1 \mathrm{~g} / \mathrm{m}^{-3}$ )
For examiners use only

| SECTION | QUESTION | MAXIMUM SCORE | CANDIDATE'S SCORE |
| :---: | :---: | :---: | :---: |
| Section A | $1-13$ | 25 |  |
| Section B | 14 | 10 |  |
|  | 15 | 06 |  |
|  | 16 | 12 |  |
|  | 17 | 09 |  |
|  | 18 | 09 |  |
|  | $\mathbf{1 9}$ | $\mathbf{1 1}$ |  |

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. Figure 1 below shows a section of a bureite containing some water

Figure 1

Determine the reading on burrette if four (4) drops of water each of volume $0.5 \mathrm{~cm}^{3}$ are added $(2 \mathrm{mks})$
$\qquad$
$\qquad$
2. A uniform wooden plank weighing 50 N and 5 m long is suspended by two ropes A and $\mathrm{B}, 1.5 \mathrm{~m}$ apart. A is 2 m from one end and B is 1.5 m from the other end as shown in figure 2 below. A concrete block of weight 100 N is suspended from the centre of the plank


Calculate the tension $\mathrm{T}_{\mathrm{A}}$ in string A
3. A steel sphere released in a tall transparent water jar attains a constant velocity after a while. The same sphere released in air falls at a constant acceleration. Explain with a reason the difference in its motion in water and in air
4. The stability of a body can be increásed by increasing the base area and lowering its centre of gravity. State one way of lowering its centre of gravity.
$\qquad$
5. To what temperature must $2,000 \mathrm{~cm}^{3}$ of a gas at $27^{\circ} \mathrm{C}$ be heated at constant pressure in order for its volume to increase to $25000 \mathrm{~cm}^{3}$ ?

A body of mass 25 kg moving with uniform accelaration has an initial momentum of $60 \mathrm{kgm} / \mathrm{s}$ and after 10 s the momentum is $90 \mathrm{kgm} / \mathrm{s}$. calculate the acceleration of the body
7. A load was raised using the system shown below. The system was then modified as in (b) and used to raise the same load


State and explain the change in efficiency
$\qquad$
$\qquad$
8. State two physical properties of a material medium which may be used to measure temperature
9. On increasing the temperature of a fixed mass of a gas its pressure was noted to increase. Explain
10. The figure 4 below shows a setced in a physics demonstration


Briefly suggest two conclusions that may be drawn from the experiment
(2mks)
$\qquad$
$\qquad$
11. A 60 litre giant density bottle weighs 100 N when empty. What will be its mass when filled with liquid W whose density is $0.72 \mathrm{~g} / \mathrm{cm} 3 ?(g=10 \mathrm{~N} / \mathrm{kg})$
12. Figure 5 below is a hydraulic jack system

(a)Name the parts labeled W, X and Y
$\qquad$
$\qquad$
$\qquad$
(b) Briefly explain how the device may be used to raise a load at the position shown
$\qquad$
(c) Part W is left open to the atmosphere as indicated. Explain
$\qquad$
$\qquad$
(d) State twgen by which the mechanical advantage of the device may be increased
(e) One such hydraulic brake system was used to lift a car whose mass was 1200 kg . The cross sectional area of $Q$ was $5000 \mathrm{~cm}^{2}$ and that of P was $5 \mathrm{~cm}^{2}$. Determine the force exerted on the pump piston
$\qquad$
$\qquad$
13. (a) Define specific latent heat of fusion
$\qquad$
$\qquad$
(b) State two factors which affect freezing point of ice
$\qquad$
$\qquad$
(c) Figure 6 below illustrates an experiment in which electrical energy is used to determine specific latent heat of fusion

(i) Other that time, state other measure measurements that would be to determine the quantity if heat Q absorbed by ice in unit time

$\qquad$
(ii) Complete the cireuit to show connection of the essential circuit components
(iii) Explain horvis to proceed and determine the value of $\mathrm{L}_{\mathrm{fl}}$, the specific latent heat of fusion of Ice
 …人
e(d) In a similar experiment, the following results were obtained when heat was switched on for 5 minutes

Voltmeter reading $=6.0 \mathrm{~V}$
Ammeter reading $=1.25 \mathrm{~A}$
(i) Calculate the power rating of the heater
(ii) If by the end of the experiment, 200 g of water at 0 oC was collected, determine the latent heat of fusion of ice
$\qquad$
$\qquad$
(b)Figure 7 below shows a block of mass 25 g and density $200 \mathrm{kgm}-3$ submerged in a certain liquid while suspended from a horizontal beam by means of a thread. A mass of 2 g is suspended from the beam as shown

(i) Determine the upthrust force acting on the block
(ii) Calculate the density of the liquid
(c) Figure 8 shows a piece of cork held with a light thread attached to the bottom of a beaker. The beaker is filled with water


Fig 8
(i)Indicate and label on the diagram the forces acting on the cork
(ii) Write an expression showing the relationship between the forces
(d) A solid displaces 8.5 cm 3 of a liquid when floating and 11.5 cm 3 when fully submerged in the liquid. The density of the solid is $0.8 \mathrm{~g} / \mathrm{cm} 3$. Determine the upthrust on the solid when floating $(3 \mathrm{mks})$
15. (a) Define angular velocity
(b) The diagram below fig. 9 shows an object of mass 2.0 kg being whirled in a vertical circle of radius 0.8 , at a uniform speed of $50 \mathrm{~m} / \mathrm{s}$


Determine
(i) The eêntripetal force on the object
(ii) The tension in the string when the object is at $\mathbf{A}$
$\qquad$
$\qquad$
(iii) The tension in the string when the object is at $\mathbf{B}$
$\qquad$
$\qquad$
(c) The speed of rotation is gradually increased until the string snaps. At what point is the string likely to snap? Explain

