\qquad

232/3
PHYSICS PRACTICAL
PAPER 3
JULY/AUGUST 2014
TIME: $2^{1 ⁄ 2}$ HOURS

Candidate's Signature: \qquad
Date: \qquad

232/3

Physics
Paper 3
$2^{1 / 2}$ hours

INSTRUCTIONS TO CANDIDATES

(a) Write your name and index number in the spaces provided above.
(b) Sign and write the date of examination in the spaces provided above.
(c) Answer ALL the questions in the spaces provided in the question paper.
(d) You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully before commencing your work.
(e) Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
(f) Candidates are advised to record their observations as soon as they are made.
(g) Non-programmable silent electronic calculators may be used.
(h) This paper consists of 8 printed pages.
(i) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
(j) Candidates should answer the questions in English.

For Examiner's Use Only

Question 1

	c	d(i)	(ii)	(iii)	(iv)	f	g	
Maximum Score	7	4	2	2	2	1	2	20
Candidate's Score								

Total \square

Question 2

	b	e	f	g	h	i	k	k	m	
Maximum Score	1	6	4	2	2	2	1	3	2	20
Candidate's Score										

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as ir
GRAND
TOTAL $h a$

Total
 missing.

QUESTION 1 PART A

1. You are provided with the following

- A micrometer screw gauge (to be shared)
- A voltmeter (0-3v or 0-5v)
- Ammeter (0-1A)
- A switch
- A jockey/long wirestith crocodile clip attached
- One new dry cell
- 8 connecting $\times \sqrt{2}$ ires with crocodile clips attached to one end Proceed as follows
(a) Set up the gericuit below, Fig 1 ensure that when the switch is open, both meters read zero, keep the switch open when readings are not being taken

Fig 1

(i) Measure and record the diameter d of the nichrome wire AB using the micrometer screw gauge $\mathrm{d}=$
m
($1 / 2 \mathrm{mk}$)
(ii) Disconnect the jockey from wire AB and close the switch. Record the value E of the voltmeter reading.
$\mathrm{E}=$ \qquad V
(b) Now, connect the jockey on AB at a distance $\mathrm{L}=2.5 \mathrm{~cm}$. Close the switch and record the voltmeter and ammeter readings, V and I respectively in table 1 below.
Table 1

L(cm)	2.5	7.5	10.0	20.0	30.0	40.0
D.d(v)						
Current I(A)						
IV(watts)						

(i)Complete the table
(5mks)
(ii) Plot a graph of IV (vertical axis) against L

(iii) Using your graph, find the value lo where your graph (the horizontal axis)
$\mathrm{Lo}=$
cm
(c)(i) Now, place the jockey on AB such that long the L is equal to the value of $\mathrm{l}=63 \mathrm{~cm}$. close the switch and record both the voltmeter reading, V and the ammeter reading, I
\qquad
I= A
(ii) Work out the values v where
$r=\frac{E-V}{I}$
(d) Work out the value of e where

$$
e=\frac{\Pi r d^{2}}{2.52}
$$

Question 1 part B

You are provide with

- Rectangular glass block
- Four optical pins
- Ruler
- Soft board
- Plain paper
- Cellotape
- Vernier calipers (to be shared)
(e) Set up the apparatus as shown in figure below

${ }^{2}$ Proceed as follows
(f)(i) Using the vernier calipers provided, measure and record the breadth b of the glass block $b=$ \qquad cm
(ii) Using cellotape, fix the mirror on one side (length) of the glass block and trace its outline on the plain paper
(iii) Draw the normal NK to the side AB and measure angle $\mathrm{i}=10^{\circ}$ from the normal
(iv) Draw the line representing the incident ray and fix pins P1 and P2 as shown in the figure
(v) By observing the images of the pins P1 and P2, locate the position P3 and P4 such that they appear in a line (no parallax) using other pins
(vi) Join the points P3 and P4 and extend them to intersect line P1P2 produced. Measure the perpendicular distance Y
(vii) Repeat steps(iii-vi) for different values of I given and record your values in the table 2 below Table 2

i°	10	20	30	40
$\mathrm{Y}(\mathrm{cm} 0$				

(g)(i) Determine the average of the values of Y
(ii) Determine the values of constant k given that $k=\frac{b}{Y}$

2. PART A

You are provided with the following

- Metre rule
- Knife edge
- 10 microscope slides
- A 50 g mass
- A piece of cellotape
- A pair of vernier calipers

Proceed as follows
(a) Using the vernier calipers provided measure the length 1 and the width of the microscope slide $\mathrm{L}=$ \qquad
W= \qquad
(b) Stack ten(10) slides together using a cellotape as shown below fig 3

Figure 3
(i) Méasure the thickness T of the space of microscope slab
$\mathrm{T}=$
ii) Determine the volume v of the stack
$\mathrm{V}=(\mathrm{WT})$
$=$ \qquad
(c) Balance the metre rule at its centre of gravity and maintain the position of the fulcrum on the centre of gravity throughout the experiment
Place the 50 g mass and the stack of slides as shown in figure 4 below

Adjust the position of both the spaces and the mass until the rule is again balanced make the distances x and y as large as possible
(i) $\mathrm{x}=$ \qquad
$y=$ \qquad
(ii) Calculate the mass M in grams of the stick of slides given that
$m=50 \frac{x}{y}$
(iii) Determine the density of glass given that density $=\frac{m}{v}$

PART B

(d) You are provided with a metre rule, a lens holder, convex lens, a candle amounted white screen
proceed as follows
(e) Set up the apparatus as shown in figure 5 below
(f) Ensuring that $\mathrm{L}=100 \mathrm{~cm}$ adjust the lens until you get a sharp diminished image on the screen.

Measure the object distance u, and image distance v

(g) (i) Repeat the procedure with $\mathrm{L}=95 \mathrm{~cm}, 90 \mathrm{~cm}, 85 \mathrm{~cm}, 80 \mathrm{~cm}$ and 75 cm each time recording the Q
xalue of u and v and tabulating the results in the table II below
(5mks)

$\mathrm{L}(\mathrm{cm})$	100	95	90	85	80	75
$\mathrm{U}(\mathrm{cm})$						
$\mathrm{V}(\mathrm{cm})$						
$m=\frac{v}{u}$						

(ii) Plot a graph of m against v

(iii) Determine the slope of the graph
(iv) Given that $\frac{v}{f}=m+1$, determine the focal length of the lens from the graph above (2 mks)

