	Index No:
Candidate	e's Signature
Date:	

Name..... 233/2CHEMISTRY PAPER 2 (THEORY) JULY/AUGUST 2014 **TIME: 2 HOURS**

Visit www.freekcsepastpapers. **RACHUON YO SOUTH SUB-COUNTY JOINT EVALUATION EXAM** For More Free KCSE Past

Kenya Certificate of Secondary Education (K.C.S.E.)

233/2 Chemistry Paper 2 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name and Index number in spaces provided above. •
- Sign and write the date of examination in the spaces provided above •
- Answer all the questions in the spaces provided above. •
- KNEC Mathematical tables and silent electronic calculators may be used.
- All working must be clearly shown where necessary. •
- Candidates should answer the questions in English. •

Question	Maximum score	Candidate's score
1	13	
2	12	
3	15	
4	12	
5	08	
6	10	
7	10	
Total score	80	

FOR EXAMINERS USE ONLY

This paper consists of 10 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. (a) The grid given below represents part of the periodic table. Study it and answer the questions that follow. The letters do not represents the actual symbols of the elements.

		reexc	r'			
		why .	Q			
0	. ×	N		R	S	
Т	J757				U	
V	arts				Ζ	
Ý	a ²					

(i) Which element will require the least amount of energy to remove one of the outermost electrons. (1mk)

(ii) Select the most reactive non-metal

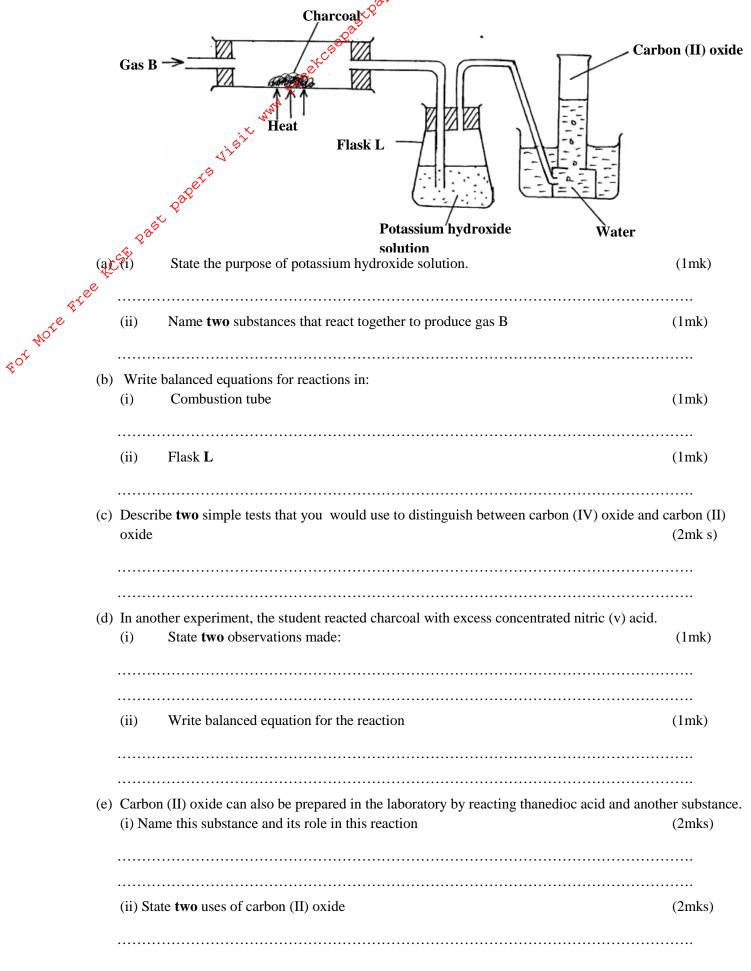
FOT NOTE

- (iii) Which of the elements has the greatest tendency of forming covalent compounds? Explain (2mks) (iv) What name is given to the family of elements to which elements **O**,**T** and **U** belong?
- (v) An element W has atomic number 15 .Indicate the position of W on the grid . (1mk) Explain why the atomic radius of S is smaller than that of R(vi) (2mks)
- (vii) Explain why the atomic radius of \mathbf{Z} is smaller than its ionic radius. (1mk)

(b) Study the information given in the table below and answer question that follow.

Formular of compound	NaCl	MgCl ₂	AlCl ₃	SiCl ₄	PCl ₅	SCl ₂
Boiling point °C	1470	1420	Sublimes	60	75	60
			at 180°C			
Melting point °C	800	710		-70	-90	-80

(i) Give **two** chlorides that are liquids at room temperature. Give a reasons for your answer. (2mks)


(1mk)

Give a possible reason why AlCl₃ has much lower boiling point that MgCl₂ although both Aluminium (ii) and Magnesium are metals. (2mks)

.....

2. A student set-up the following apparatus to prepare carbon (II) oxide from charcoal in the laboratory.

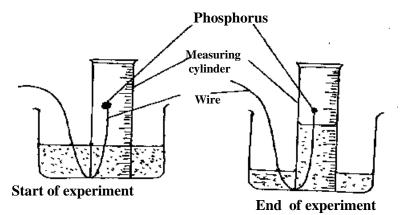
Use the standard electrode potential for the elements A,B,C and D given below to answer the questions that follow. The letters do not represent the actual symbols of the elements.

e	a) •	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1mk)
t wore fre		(ii) Strongest reducing agent	(1mk)
\$ ^{0°}	b)	(i) Draw a labeled diagram of the electro chemical cell that would be obtained when half ce element A and B are combined.	ell of (3mks)
		(ii) Calculate the E value of the electrochemical cell constructed in 3b(i) above	 (1mk)
		(iii) Which two elements if used together in a cell would produce the largest e.m.f	 (1mk)
	c)	Calculate the number of faradays required to completely reduce 0.1 mole of Fe^{+3} to Fe	 (2mks)

d) One of the major application of electrolysis is electroplating .In chromium plating the steel article is usually plated first with nickel or copper then chromium in a plating bath which contain chromium compounds in sulphuric (VI) acid and water. Chromium deposits on the article.
(i) Give a reason why steel parts are chromium plated. (1mk)

.....

Chemistry 2


	(ii) Why is it necessary for the steel to be mated first with nickel or copper before chapplied?	romium is (1mk)
	(iii) Give an ionic equation for the process responsible for chromium plating	(1mk)
Ō	(iv) $e^{a^2 e^{x^2}}$ If an electrical current of 4.5 amperes is passed through the chromium plating fo would be the steel article? Cr = 52.0, 1 faraday = 96,500 coulombs)	r 20hours, what (3mks)
FOT NOTE FILE	Study the flow chart below and answer questions that follow:	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I ₂ CH ₂ Cl=HCl
	$\begin{array}{c c} \mathbf{T} & \mathbf{T} & \mathbf{T} \\ \mathbf{N} \mathbf{a}_{(s)} \\ \mathbf{T} + \mathbf{gas} \mathbf{P} \\ \mathbf{Q} \\ \mathbf{Q} \\ \mathbf{Q} \\ \mathbf{Q} \\ \mathbf{C} \\ \mathbf{H}_{(aq)} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H}_{(aq)} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ C$	

	L H	\mathbf{H}	∣ J H´n	
a) Name substance J and draw its structural formula				(2mks)
Name :				
Structural formula:				
b) What reagents and conditions are necessary for:				(2mks)
(I) Step III				
Reagent		•••••		
Condition:		•••••		
(II) Step II				
Condition				

c) Name	the following:	
(i)	L:	(1mk)
(ii)	Gas P :	(1mk)
(iii)	Q	(1mk)
(iv)	M	(1mk)
d) Write t	he equation of the reaction that occur in step IV	(1mk)
e) Give th	ne name of Process in step V	(1mk)
f) If the a	elative molecular mass of R is 21,000, determine the value of n. ($C= 12.0$, $H = 1.0$)	(2mks)
4 ^C		•••••

de.

A student set-up the apparatus shown below in order to determine the percentage by volume of oxygen in the air. Study it and answer the questions that follow.

a) (i) State one observations made in the measuring cylinder at the start of the experiment. Explain (2mks)

(ii) The PH of the contents of the beaker at the end of the experiment was found to be 4. Explain the observation. (2mks)
(2mks)
(iii) The volume of air in the measuring cylinder at the end f the experiment was measured study the data given below and answer the questions that follow. Volume of air at start of the experiment = 30.65 cm³ Volume of air at the end of the experiment = 24.28 cm³ Determine the percentage volume of oxygen in the air. (1mk)

FOT MOTE

		contraction of the second s	
		b) State and explain the observation made when $a^{e_{\mu}}$ mixture of magnesium powder and copper (II)) oxide is
		b) State and explain the observation made when a mixture of magnesium powder and copper (II) heated in a crucible	(2mks)
		eetce	
		c) State two air pollutants produced by motor vehicles.	(1mk)
	6.	(a) The results below were obtained in an experiment conducted by form 3 students from Ratan School yang magnesium	si secondary
		Mass of the crucible + Lid = $19.52g$	
		d ass of the crucible + Lid + magnesium ribbon = 20.36g	
	\$f.e	Mass of the crucible + Lid + magnesium oxide = $20.92g$	
More	(i)	Use the results to find the percentage mass of magnesium and oxygen in magnesium oxide.	(2mks)
\$ ^{0[°]}			
	(ii)	Determine the empirical formula of magnesium oxide. (Mg = 24.0 , O = 16.0)	(2mks)

· · ·	ally mixed with sodium chloride, 8.8g of the mixture cm^3 of the solution was neutralized by 20.0cm ³ of cm^3 of cm^3 of the solution was neutralized by 20.0cm ³ of cm^3 of c	
(i) Write an equation for the reaction the	hat took place.	(1mk)
(ii) calculate the:		
I. Number of moles of the su	bstance that reacted with sulphuric (VI) acid	(2mks)
	ostance that would react with sulphuric (VI) acid in	
solution		(1mk)
(iii) The percentage of sodium chloride	in the mixture.	(2mks)
© Rach South sub-county form four 2014	7 <i>Ch</i>	emistry 2

7. (a) Use the bond energies given in the table below to calculate the enthalpy change for the reaction $C_2H_{6(g)} + Br_{2(g)} \longrightarrow C_2H_{g}Br_{(g)} + HBr_{(g)}$

<u></u>	20-			
Bond	C – H	C – Br	Br – Br	H – Br
Bond energy KJ/mole ^e	413	280	193	365
<u>S</u>				
white				

(b) On the space provided below, sketch the cooling curve that would be obtained when a boiling tube containing water at 80°C is immersed in a freezing mixture maintained at -10° C (2mks)

 \int_{10}^{6} (c) Butane C₄H₁₀ cannot be prepared directly from its elements but its standard heat of formation (H_j),

can be obtained indirectly.

FOT NOTE

The following heats of combustion are given

- $\Delta H_C^{"}$ (Carbon) = 393 kJ/mol
- ΔH_{C}^{*} (Hydrogen) = 286 kJ/mol

 ΔH_C^* (Butane) = - 2877 kJ/mol

- Draw an energy cycle diagram linking the heat of formation of butane with its heat of combustion and the heat of combustion of its constituents elements.
- (ii) Calculate the heat of formation of butane $H_{1}^{*}(C_{4}H_{10})$ (2mks)
 - d) Given that the lattice enthalpy of potassium chloride is + 690 kJ/mol and hydration enthalpies of K^+ and CI^- are -322kJ and 364kJ respectively. Calculate the enthalpy of solution of potassium chloride. (2mks)