Candidate's Signature Date.....

233/3CHEMISTRY PAPER 3 PRACTICAL JULY/AUGUST - 2014 TIME: 2 ¹/₄ HOURS

Name.....

Papers Visit www.freekcsepastrapers. **RACHUÓNYO SOUTH SUB-COUNTY JOINT EVALUATION EXAM** For More Free LCSE

Kenya Certificate of Secondary Education (K.C.S.E.)

233/3 Chemistry Paper 3 2¹/₄ Hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided. •
- Sign and write the date of examination in the spaces provided.
- Answer *all* the questions in the spaces provided in the question paper. •
- You are not allowed to start working with the apparatus for the first 15 minutes of the • 2¹/₄ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you need.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used.

For examiners use only

Question	Maximum Score	Candidate's Score
1	19	
2	15	
3	06	
Total	40	

This paper consists of 6 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

Question 1

(20marks)

You are provided with;

- Solid **A** in a boiling tube •
- Solution **B**, sodium hydroxide •
- Acsepastpapers.com 0.125M.monobasic acid, solution C •

You are required to;

- Determine molarity of solution **B** (i)
- (ii) Determine solubility of solid A

Procedure I

for More

- Using a measuring cylinder ,place 50 cm^3 of solution **B** into an empty 250ml beaker. Add 100 cm^3 (i) of distilled water to the solution. Labe this solution as solution **D**.
- Fill the burette with solution C (ii)
- (ii) Using pipette filler, place 25 cm^3 of solution d into a 250ml conical flask. Add two drops of phenolphathatlein indicator. .e^e
- (iv) Titrate solution **D** with solution **C**
- Record your results in table 1 . repeat the titration two more times and complete table 1. (v)

			Ι	II	III	
		Final burette reading (cm ³)				
	-	Initial burette reading (cm ³)				
		Volume of solution \mathbf{C} used (cm ³)				
(a)	(i) Ca	alculate average volume of solution C	C used.			(4mks) (1mk)
	(ii)	Calculate moles of solution C used	l in the exp	eriment.		(1mk)
	(iii)	Calculate moles of solution D use	d.			(1mk)
	(iv)	Calculate molarity of solution D				(1mk)
	(v)	Calculate molarity of solution B .				(2mks)

Procedure II

- pers.com Using measuring cylinder add 20 cm_{20}^3 of distilled water to solid **A** in the boiling tube. Suing a (i) glass rod, stir the mixture thoroughly for about three minutes.
- Filter the mixture obtained into addry 250ml volumetric flask. Label the filtrate solution A. (ii)
- (iii) Clean the burette and fill it with solution A.

27

- Using a pipette and pipette filler, place 25cm³ of solution **D** into a 250ml conical flask . Add two (iv) drops of phenolphthalein indicator.
- Titrate solution **D** with solution **A**. record your results in table 2 (v)
- Repeat the titration two more times and complete table 2. (vi)

Ι	II	III
-	I	

e For More (b) (4mks) Calculate; Average volume of solution A used (1mk)(i)

- (ii) Moles of solution **D** used
- (iii) Moles of solution A used given that 2 moles of solution A requires 1 mole of solution D for complete neutralization (1mk)
- Solubility o solid A given that density of the solution formed is $1g/cm^3$ and RFM of A = 126. (iv) (2mks)
- 2 You are provided with solid **D**. perform the following test and write the observations and inferences.
 - (a) Place solid **D** into a boiling tube and add 10cm3 of distilled water. Shake the boiling tube and filter. Keep the residue for test (b). Divide the filtrate into four portions.

Observation	Inferences
(1mk)	(1mk)

(i) To the first portion, add sodium hydroxide dropwise until in excess.

Observation	Inferences
(1mk)	(1mk)

(1mk)

To the second portion, add ammoreoa solution dropwise until in excess. (ii)

	4	5 ⁰		
Observation	all	Y	Inferences	
	et			
	4.5 C			
	N.			
	NN.	(1mk)		(1mk)
-	×,			

\$Y (iii) To the third portion, add a few drops of Lead(II) nitrate solution

Observation		Inferences	
-2 ⁰⁷⁺			
ant i			
2 ^{.0}			
<u>A</u>	(¹ / ₂ mk)		(¹ / ₂ mk)

	200 DO		
	(¹ /2 m)	(¹ / ₂ mk)	
e(iv) To the fourth portion, add a few drops o acid.	of barium nitration solution followed by dilute nitri	ic (v)
NOT C	Observation	Inferences	
\$0°E			
	(1 m)	(1mk)	

(b) Place the residue into attest tube and add 10cm³ of dilute nitric (v) acid and shake until the solid dissolves.

Observation	Inferences
(16 mk)	(16 mk)
(⁷ 2 IIIK)	(⁷ 2 IIIK)

(i) To the first portion, add sodium hydroxide dropwise until in excess.

Observation		Inferences	
	(1 mk)		(1mk)

To the second portion, add ammonia solution dropwise until in excess. (ii)

Observation	Inferences
(1 mk)	(1mk)

To the third portion, add a few drops of sodium sulphate solution. (iii)

A A A A A A A A A A A A A A A A A A A				
Observation	O ^{R²}	Inferences		
	C ^G O ^V			
	et			
	4. ⁵			
	(¹ / ₂ mk)		(½ mk)	
A A A A A A A A A A A A A A A A A A A	4			

Ŷ You are provided with solid L. Carry out the tests below and record your observation and inferences 3. in the space provided.

(a) Heat half spatula of solid L in a non-luminous flame of aBunsen burner.

	Qbservation	Inferences			
.10					
7, T					
	(1 mk)	(1mk)			

for note free (b) Add 5cm³ of distilled to the remaining solid L and shale well. Divide the solution into two portion. (i) To the first portion, add a few drops of acidified potassium manganate (VII) and warm

Inference	Inferences	
(1 mk)	(1mk)	
	(1 mk)	

To the second portion, add a quarter spatula and fill of sodium hydrogen carbonate. (ii)

Observation		Inferences	
	(1 mk)		(1mk)