\qquad
Date: \qquad
121/1
MATHEMATICS
Paper 1
JULY/AUGUST -2014
Time: $\mathbf{2 ¹}_{\mathbf{1}}^{\mathbf{2}}$ Hours

RACHEUONYO SOUTH SUB-COUNTY TOTNT EVALUATON EXAM
 Kenya Certificate of Secondary Education (K.C.S.E)

MATHEMATICS

Paper 1

INSTRUCTIONS TO THE CANDIDATES

- Write your name and index number in the spaces provided above
- This paper contains two sections; Section 1 and Section 11.
- Answer all the questions in section 1 and only five questions from Section 11
- All workings and answers must be written on the question paper in the spaces provided below each question.
- Marks may be given for correct working even if the answer is wrong.
- Calculations and KNEC Mathematical tables may be used EXCEPT where stated otherwise.
- Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.

FOR EXAMINERS'S USE ONLY

Section 1

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total
Marks																	

Section 1I

Question	17	18	19	20	21	22	13	24	Total
Marks									

GRAND TOTAL

This paper consists of 16 printed pages. Candidates should check carefully to ascertain that all the pages are printed as indicated and no questions are missing.

SECTION ${ }^{2}$ (50 MARKS)

Answer all questions in this section in the spaces provided.

1. Without using a calculator ,evaluate

$$
\frac{3 / 4+15 / 7 \div 4 / 7 \text { of } 21 / 3 \text { (}}{(13 / 7-5 / 8) \times 2 / 3}
$$

2. Ta the remainder and the girl got the rest. Find the percentage share of the younger boy to the girl's share.
3. Three numbers, 1400,1960 and \mathbf{n} have a G.C.D and L.C.M of 70 and $2^{2} \times 5^{2} \times 7^{2} \times 11$ respectively. Find the least possible value of \mathbf{n}
4. A bus starts off from Kitale at 9 . a.m and travels towards Kakamega at a speed of $60 \mathrm{~km} / \mathrm{hr}$. At 9.50 a.m, a matatu leaves Kakamega and travels towards Kitale at a speed of $60 \mathrm{Km} / \mathrm{h}$. How far from Kitale will the two vehicles meet.
5. Find the equation of a straight line which is equidistant from the points $\mathbf{A}(2,3)$ and $\mathbf{B}(6,1)(3 \mathrm{mks})$
6. Simplify the expression completely

$$
Q \frac{7_{2}^{x} x^{2}-16 x}{20-11 x-3 x^{2}}
$$

7. Given that $\sin \theta=2 / 3$ and θ is an a cute angle, find without using tables $\tan ^{2} \theta+\operatorname{Cos}^{2} \theta$. Give your answer as a mixed fraction.
8. Solve for y in the equation below.

$$
8\left(2^{2}\right)^{y}=6\left(2^{y}\right)-1
$$

9. Using a ruler, a pair of compasses only and (pitoportional) a set square, construct on the upper side division of line $\mathbf{B C}$, a line $\mathbf{B D}$ such that $\angle \mathbf{D B C}=37.5^{\circ}$. Use the line $\mathbf{B D}$ to divide $\mathbf{B C}$ into 4 equal portions.
10. Sketch the net of the solid below.

11. In a regular polygon, each interior angle is x^{o} and each exterior angle is $\left(\frac{x-36}{3}\right)^{o}$
(i) Find angle X^{o}
(ii) Find the number of sides of the polygon
12. The figure below represents a plot of land $\mathbf{A B C D}$ such that $\mathbf{A B}=85 \mathrm{~m}, \mathbf{B C} 75 \mathrm{~m} \mathbf{C D}=60 \mathrm{~m}$ $\mathbf{D A}=50 \mathrm{~m}$ and angle $\mathbf{A C B}=90^{\circ}$. (not drapen to scale)

Detergmine the area of the plot, in hectares correct to two decimal places.
13. An open rectangular box measures externally 32 cm long, 27 cm wide and 15 cm deep. The box is made up of metal 1 cm thick. If it has a mass of 1.5 kg , what is the density of the box to 4 significant figures?
14. Find the integral values of x which satisfy the following inequalities; $2 x+3>5 x-3>-8$
15. A Kenyan bank buys and sells foreign currency as shown below.

	Buyingdksh	Selling Ksh
1 US dollar (\$)	63.80	63.20
1 UK pound (£)	$\times 125.00$	125.95

A tourist arrived in Kenya with $£ 9600$ which he converted into Kshs at a commission of 5%. He later used $3 / 4$ of the motney before changing the balance of dollars at no commission calculate ; to the nearest dollar, the âmount he received.
(3mks)
16. The histogram shown below represents the distribution of marks obtained in attest. The bar marked A has a height of 3.2 units while \mathbf{B} has a height 1.2 units. If the frequency of the class represented by \mathbf{B} is 6 , find the frequency of the bar represented by \mathbf{A}.

17. The figure below (not drawn to scalese) shows a quadrilateral $\mathbf{A B C D}$ inscribed in a circle. $\mathbf{A B}=5 \mathrm{~cm}$, $\mathbf{B C}=8 \mathrm{~cm}, \mathbf{C D}=7 \mathrm{~cm}$ and $\mathbf{A D}=8 \mathrm{~cm} . \mathbf{A C}$ is one of the diagonals of length 10 cm .

(a) Find the size of angle $\mathbf{A B C}$.
(b) Find the radius of the circle.
(c) Hence, calculate the area of the shaded region.
18. In the figure below $\overrightarrow{\mathbf{O B}}=\underset{\sim}{\mathbf{b}}, \overrightarrow{\mathbf{O C}}=3 \overrightarrow{\mathbf{O B}}$ and $\overrightarrow{\boldsymbol{\sigma}^{5}}{ }^{5^{\circ}}=\mathbf{\sim}$
(a) Given that $\overrightarrow{\mathbf{O D}}=1 / 3 \overrightarrow{\mathbf{O A}}$ and $\overrightarrow{\mathbf{A N}} \xrightarrow{-0} / 2 \overrightarrow{\mathbf{A C}}, \overrightarrow{\mathbf{C D}}$ and $\overrightarrow{\mathbf{A B}}$ meet at \mathbf{M}. Determine in terms of $\underset{\sim}{\text { a }}$ and b

$\xrightarrow[(i)]{\stackrel{S}{4}} \quad \overrightarrow{\mathbf{A B}}$

(ii) $\overrightarrow{\mathbf{C D}}$
(b) Given that $\overrightarrow{\mathbf{C M}}=\mathbf{k} \mathbf{C D}$ and $\mathbf{A} \overrightarrow{\mathbf{M}}=\mathbf{h} \mathbf{A B}$ determine the values of the scalars \mathbf{k} and \mathbf{h}
(c) Show that \mathbf{O}, \mathbf{M} and \mathbf{N} are collinear.
19. The table below shows the analysis of examination marks scored by 160 candidates.

Marks \%	$1-10$	$11-20$	$21-3 \omega^{5}$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$	$81-90$	$91-100$
No. of candidates	2	6	$15 \complement^{2}$	22	36	34	20	15	6	4

(a) Using an assumed mean of 45.5 , calculate
(i) The mean
(b) Calculate the minimum mark for grade \mathbf{A} if 40 students got grade \mathbf{A} -
20. $\mathbf{A B C D}$ is a quadrilateral with vertices as follows: $\mathbf{A}(3,1), \mathbf{B}(2,4) \mathbf{C}(4,3)$ and $\mathbf{D}(5,1)$
(a) (i) On the grid provided draw the quadritoral $\mathbf{A B C D}$ and the image $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime}$ under a transformation
with matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Find the $c^{c^{e^{e}}}$
Describe the transformation that maps $\mathbf{A B C D}$ onto $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime}$ fully (1 mk)
(b) A transformation represented by the matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right]$ maps $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime}$ onto $\mathbf{A}^{\prime} \mathbf{B}^{\prime \prime} \mathbf{C}^{\prime \prime} \mathbf{D}^{\prime \prime}$ find the co-
ordinates of $\mathbf{A}^{\prime \prime} \mathbf{B}^{\prime \prime} \mathbf{C}^{\prime \prime \prime} \mathbf{D}^{\prime \prime}$. Plot $\mathbf{A}^{\prime \prime} \mathbf{B}^{\prime \prime} \mathbf{C}^{\prime \prime} \mathbf{D}^{\prime \prime}$ on the same grid.
(3mks)
(c) Determine åsingle transformation that maps $\mathbf{A}^{\prime \prime} \mathbf{B}^{\prime \prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime \prime}$ onto $\mathbf{A B C D}$. Describe this transformation fully.

O
21. Four towns $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and S are such that $\mathbf{Q} 1500 \mathrm{~km}$ due east of town \mathbf{P}. Town R is 1080 km due North of town \mathbf{Q}. Town S is on a bearinge of 330° from P and on a bearing of 300° from \mathbf{R}.
(a) Use a ruler and a pair of compassés and show the positions of town $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}. (take a scale of $1 \mathrm{~cm}=3000 \mathrm{~km}$)
(ii) Determine the distance $\mathbf{R S}$ in km .
(iii) Determine the bearing of town \mathbf{S} from \mathbf{Q}
22. The diagram below represents two vertical wait - towers $\mathbf{A B}$ and $\mathbf{C D}$ on a level ground. \mathbf{P} and \mathbf{Q} are two points on a straight road BD. The height of the tower $\mathbf{A B}$ is 20 m and road $\mathbf{B D}$ is 200 m

(a) A car moves from \mathbf{B} towards \mathbf{D}. At point \mathbf{P}, the angle of depression of the car from points \mathbf{A} is 11.3° Calculate the distance BP to 4 significant figures.
(b) If the car takes 5 second to move from \mathbf{P} to \mathbf{Q} at an average speed of $36 \mathrm{~km} / \mathrm{hr}$, calculate the angle of depression of \mathbf{Q} from \mathbf{A} to 2 decimal places.
(c) Given that $\mathbf{Q C}=50.9 \mathrm{~cm}$, calculate
(i) The height of $\mathbf{C D}$ in meters to 2 decimal places;
(ii) The angle of elevation of \mathbf{A} from \mathbf{C} to the nearest degree.
23. The parents of a certain mixed seconđary school decided to buy a school van worth Ksh. 900,000. Each student was to contribute the same amount of money. 50 students were transferred from the school; as a results each f the remêining students had to pay Ksh. 600 more.
(a) Find the original number of thes students in the school.
(b) Find the percentage change in contributions per student.
(c) If the ratio of boys to girl in the school was 11:7 find the amount money contributed by boys alone.
(2mks)
24. The distance \mathbf{S} metres from a fixed point ,covered by a particle after \mathbf{t} seconds is given y the equation;
$S=t^{3}-6 t^{2}+9 t+5$
(a) Calculate the gradient tot the etrve at $\mathbf{t}=0.5$ seconds.
e(b) Determine the values of \mathbf{S} at the maximum turning points of the curve.
(c) On the space provided, sketch the curve of $\mathbf{S}=\mathbf{t}^{\mathbf{3}}-\mathbf{6} \mathbf{t}^{2}+\mathbf{9 t}+\mathbf{5}$

