\qquad

232/1
PHYSICS
THEORY
PAPER 1
JULY/AUGUST 2014
TIME: 2 HOURS

Candidate's Signature
Date:
\qquad
\qquad

RACHUONYO SOUTH SUB-COUNTY JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

232/1

PHYSICS
Paper 1
2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided.
- Mathematical tables and non-programmable calculators may be used.
- This paper consists of section A and section B.
- Attempt all the questions in the spaces provided.
- ALL working MUST be clearly shown.

For Examiners Use

SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
A	$1-14$	25	
B	15	12	
	16	11	
	18	14	
	18	10	
		08	
	19	$\mathbf{8 0}$	

This paper consists of 9 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

SECTION $A^{\prime \prime}$ (25MARKS)
 Answer all questions in this in the spaces provided

1. Figure 1. Shows a glass beaker of coss sectional area $10.5 \mathrm{~cm}^{2}$

Fig 1

When a metâl block of mass 250 g is immersed into the water, the level of water rises by 3.5 cm . determiné the density of the metal block. Express your answer in S.I unit
(3mks)
2. The figure 2 shows air flowing through a pipe of nonuniform cross sectional area. Two tubes \mathbf{A} and B are dipped into the liquid as shown.

(a) Indicate the level of the liquid in tubes \mathbf{A} and \mathbf{B}
(b) Explain your answer in part (a) above
3. A motor cyclist wears a helmet in the inside with sponge. Explain how this minimizes injuries to the motorists head when involved in an accident.
\qquad
\qquad
4. A balloon is filled with a gas which is lighter than air. It is observed to rise in air up to a certain height state a reason why the balloon stops rising.
\qquad
5. Figure 3 shows two corks \mathbf{P} and \mathbf{Q} fixed on arpolished and a dull surface with wax.

Cork fixed

 with waxFig 3

Explain the observation, when the heater is switched on for a short time given that the heater is equidistant from the two surfaces.
7. Figure 4 shows a store of weight \mathbf{W} placed on an inclined plane. If the angle of inclination is θ

Fig 4
a) Indicate with arrows, two other forces acting on the stone.
b) State how each of the forces in (a) above is affected when the angle θ is increased.
\qquad
\qquad
8. State the reason why it is easier to separate water into drops than to separate a solid into smaller pieces.
9. Figure 5 shows a uniform beam held at equilibrium.

10. Figure 6 shows a glass filfed with ice placed on a bench.

Fig 6

State the change on the stability of the glass when temperature increases.
11. State the fastest mode of heat transfer.
12. Explain how sensitivity of clinical thermometer can be improved.
\qquad
13. Figure 7 shows a mass of 12 g suspended on a set of 6 identical springs. When the mass was hanged on spring \mathbf{A}, it extended by 5 cm .

Determine the extension of the combination shown if each spring and rod has negligible weight.
(2mks)

Answer all the questions in this section in the spaces provided.
15. (a) State the law of inertia
(b) A ball of mass 50 kg is thrown from the top of a cliff 20 m high with a horizontal velocity of $20 \mathrm{~m} / \mathrm{s}$. On reaching the ground it completely covered arm \mathbf{X} of a hydraulic lift such that no water splashed out. The other arm \mathbf{Y} has a weight of 25200 N . Assuming the tap was opened when the ball struck the surface of water.

Determine
(i) The time taken by the ball to strike the surface of water at arm \mathbf{X}
(ii) The distance from the foot of the cliff to where the ball strikes the surface of water
\qquad
\qquad
(iii) The vertical with which it struck the surface of water at arm \mathbf{X}
(iv) The force with whichothe ball struck the surface of water
\qquad
\qquad
(v) The distance moved by the 25200 N load arm \mathbf{Y} if the level of water in arm \mathbf{X} and arm \mathbf{Y} was initially the same.
(2 mks)
\qquad
16. The graph shows the relationship between volume and temperature for an experiment.

(i) What was the volume of the gas at $0^{\circ} \mathrm{C}$
\qquad
\qquad
(ii) At what temperature would the volume of the gas be Zero
\qquad
\qquad
(iii) Explain why the temperature is part (ii) above cannot be achieved.
(b) A wooden block of mass 50 g floats with 20% of its volume above the water surface and kept in place by a string as shown below. The tension in the string is 0.06 N

Fig10

(i) The upthrust experienced by the object.
(ii) The volumê of the displaced.
(iii) Q^{ρ} The density of the object

Fig11

(a) (i) Explain why the car is more likely to skid at \mathbf{B} than at \mathbf{A}
(ii) If the radius of the path at \mathbf{B} is 250 m and the car has a mass of 6000 kg , determine the maximum speed the a car can be driven while at \mathbf{b} to avoid skidding if the co-efficient of friction between the road and the tyres is 0.3
(b) A string of length 70 cm is used to whirl a stone of mass 0.5 kg in a circle of a vertical plane at $5 \mathrm{rev} / \mathrm{s}$. determine:
(i) The period
(ii) The angular velocity
(c) The figure 12 shows a flywheel of radius 14 and suspended about a horizontal axis through its centre so that it can rotate freely about the axis. thread is wrapped round the wheel and mass attached to its loose end so as to hang at a point 1.26 m above the ground.

Fig12

When the mass is released, it accelerates at $0.28 \mathrm{~m} / \mathrm{s}^{2}$ determine the angular velocity of the wheel just before the mass strikes the ground.
(b) Water of mass 200 g and temperature $10^{\circ} \mathrm{C}$ is put in a copper calorimeter of mass 80 g . steam from boiler at normal pressure is passed into the calorimeter for some time. The total mass of the calorimeter and contents is 283 g . the final temperature of the contents is measured and is \mathbf{T}.

Determine :
(i) Heat lost by steam on condensing to water.
(ii) Heat lost by condensed water.
(iii) Heat gained by thêc calorimeter and the cold water
(take specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$ and copper $=900 \mathrm{j} / \mathrm{kg} / \mathrm{k}$. specific latent heat of vaporization of steam $=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$)
19. (a) The figure 13 shows a pulley system used for lifting loads.

Fig13

(i) What is the velocity ratio of the pulley system
(ii) If it's efficiency is 80%. Determine i $6 \delta^{\circ}$ mechanical advantage.
(iii) If the load $\mathrm{is}^{2} 300 \mathrm{~N}$, determine the effort.
(b) Derive an expression for the velocity ratio of the wheel and axle machine if the wheel has a radius of \mathbf{R} and axle has a radius of \mathbf{r}.
(3mks)

