\qquad

232/2
PHYSICS
THEORY
PAPER 2
JULY/AUGUST 2014
TIME: 2 HOURS

Candidate's Signature
Date: \qquad
\qquad

RÅCHUONYO SOUTH SUB-COUNTY JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

232/2
PHYSICS
Paper 2
2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided.
- Mathematical tables and non-programmable calculators may be used.
- This paper consists of section \mathbf{A} and section \mathbf{B}.
- Attempt all the questions in the spaces provided.
- ALL working MUST be clearly shown.

For Examiners Use

SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
A	$1-12$	25	
B	13	10	
	14	10	
	15	07	
	16	09	
	17	09	
	18		
	TOTAL	$\mathbf{8 0}$	

This paper consists of 9 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

SECTION R (25 MARKS)

1. The figure below shows a series of wageffronts one wavelength apart approaching a gap between two barriers in aripple tank

Show $\hat{\mathrm{h}}$ the figure what happens as the waves pass the gap.
$2 . e^{e}$ A mine worker stands between two vertical cliffs 400 m from the nearest cliff. The cliff are x and metres apart. Every time he strike the rock once, he hears two echoes, the first one after 2.5 seconds, while the second follows 2 seconds later.
Calculate
(i) The speed of sound in air.
(2mks)
(ii) The value of \boldsymbol{x}
3. The coil of an electric motor is usually round on a soft iron armature. State the purpose of soft iron armature.
(1mk)
\qquad
4. The diagram below shows a ray of light incident on a glass-oil interface.

If the refractive indices of oil and glass are $6 / 3$ and $3 / 2$ respectively, determine the value of \mathbf{r} (3 mks)
5. The figure shows a simple cell.

Use the infformation on the figure to answer the questions below.
(a) Name the parts labeled \mathbf{A} and \mathbf{B}
A.
B. \qquad
(u) It is observed that the bulb goes off after a short time. Explain this observation
6. The figure below shows how a fuse may be connected in electric current

In either case the fuse blows out but (a) is dangerous while (b) is not. Explain
\qquad
\qquad
7. The figure shows a simple circuit diagram of an electric bell.

Explain how it works
8. The figure shows part of electromagnetic speetrum

Ultra violet rays	Micro wave	x-rays	Red light

Arrange the electromagnetic wave in the order of decreasing energy.
\qquad . \qquad
\qquad
9. State one advantage of using optical fibres in communication.
10. Find the current flowing and voltage across the 8 resister in the circuit.

11. The following is part of radio active decay series. ${ }_{83}^{234} \mathrm{Bi} \longrightarrow \longrightarrow{ }_{84}^{90} X \longrightarrow \dot{\alpha} \longrightarrow{ }_{b}^{230} Y$

Determine the value of \mathbf{a} and \mathbf{b}
12. State one property of cathode rays.
\qquad
\qquad

SECTION B (55MARKS)

Answer all the questions in this section

13. (a) In the experiment to observe interference of light waves a double slit is placed close to the source see figure.

(i) State the function of the double slit.
(ii) State and explain what is δ buserved on the screen.
\qquad
\qquad
\qquad
(iii) Stexe what is observed on the screen when:
(畕) The slit separation $\mathrm{S}_{1} \mathrm{~S}_{2}$ is reduced.
(II) White light source is used in place of monochromatic source.
(c) (i) The figure below shows a set up by a student.

State and explain what happens to the sound from the buzzer as the bottle and its contents are cooled to $0^{\circ} \mathrm{C}$
\qquad
\qquad
(iii) In the pipe below complete the diagram to show how air in the open pipe vibrate with a frequency of first overtone.

Open pipe

14. (a) The figure below shows an arrangement of capacitor connected to a 10 V DC supply.

Determine
(i) The of of capacitance of the arrangement.
(ii) The total energy stored.
(b) The graph below shows the variation of potential difference \mathbf{V} with current, \mathbf{I} for a certain cell.

From the graph determine:
(i) Internal reaction of the cell.
(ii) The e.m.f of the cell
(ii) Use the law to determine the direction of the induced current in the circuit below (1mk)

(b) Two identical coils \mathbf{P} and \mathbf{Q} are placed close to each other as shown.

(i) State the observation on the galvanometer made when the switch \mathbf{K} is closed. (1mk)
\qquad
\qquad
(ii) Explain the observation stated in (i) above
\qquad
(c) A student designed a transformer to provide power to an electric bell marked $24 \mathrm{~W}, 6 \mathrm{~V}$ from a 240 V mains. He wound 50 turns and \mathbf{N} turns on an iron ring. When he a connected the coil of 50 turns to the bell and the \mathbf{N} turns coil to an a.c, he found that the transformer was only 60% efficient. Find:
(i) The value of \mathbf{N}
(2mks)
(ii) The power in the coil with N turns
16. (a) (i) With the aid of a diagram differentiate between forward biased and reverse biased diode.
(ii) Sketch a graph to show how a current through a forward biased p-n function varies with potentiad difference across it.
(2mks)
(b) The figure below shows an incomplete circuit for full wave rectification

(i) Complete the diagram to show how the diodes should be arranges for the current to flow through \mathbf{R} in the direction shown with an arrow.
(ii) Sketch the output voltage as observed in the CRO
17. (a) Complete the diagram below indicating the rays that will lead to the formation of the image \mathbf{I} shown below and locate the object position

(b) An object is placed 12 cm from a convex léns and it forms a virtual image 36 cm from the lens calculate the focal length of the lens.
(c) The graph below shows variation of $\frac{I}{u}\left(\mathrm{~cm}^{-1}\right)$ with $\frac{I}{v}\left(\mathrm{~cm}^{-1}\right)$ for an object placed infront of a concafe mirror

From the graph,
(i) Determine the focal of the mirror.
(ii) Determine the image distance when the object is 20 cm from the mirror.
18. (a) The graph below shows stopping potentiad $\varepsilon^{\frac{c^{5}}{5}}$ against frequency for a photocell.

From the graph determine:
(i) Threshohd frequency
(ii) Planck's constant
(iii) Work function of the metal
(b) The figure below shows an x-ray tube.

(i) Lndicate on the diagram the path of the x-ray beam supplied by the tube.
(iif) Why is \mathbf{B} set at an angle of 45° relative to the electron beam.
(iii) Why are cooling pins necessary
\qquad
(iv) Why is the tube evacuated.
\qquad
\qquad
(v) State the function of the part labeled \mathbf{C}

