\qquad

232/3
PHYSICS
PRACTICAL
PAPER 3
JULY/AUGUST 2014
TIME: 2½ HOURS

Candidate's Signature
Date:
\qquad
\qquad

RACHUONYO SOUTH SUB-COUNTY JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

232/3
Physics
Paper 3
$21 / 2$ hours

INSTRUCTIONS TO CANDIDATES:

1. Write your name and index number in the spaces provided above.
2. Sign and write the date of the examination in the spaces provided above.
3. You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully before commencing your work.
4. Marks are given for a clear record of the observation actually made, their suitability, accuracy and the use made of them.

FOR EXAMINERS' USE ONLY

Question 1		
Question 2		
Total		

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

Part A

1. Question 1

You are provided with the following appezatus

- One resistor labeled \mathbf{R}
- A wire labeled \mathbf{W} mounted on pinill $^{\text {andmeter scale }}$
- A wire lebelled \mathbf{S} mounted gn á millimeter scale
- One dry cell and a cell hofder
- One jockey
- One centre zero gakûanometer
- Eight connecting ${ }^{\text {w }}$ wires, four with crocodile clips at both ends
- A micrometefscrew gauge
- A switch ${ }_{x}$

Proceed as follows

(a) Determine the average diameter D , of the wire labeled W , using the micrometer screw gauge eprovided.
$\mathrm{D}_{1}=$ \qquad mm,
($1 / 2 \mathrm{mk}$)
$\mathrm{D}_{2}=$ \qquad mm
$\mathrm{D}=\underline{\mathrm{D}}_{1}+\underline{\mathrm{D}}_{2}$
$=$ \qquad m
(b) Set up the apparatus as shown in the circuit diagram in figure 1, below.

Use the crocodile clips to fix length \mathbf{L}, of wire labeled S at 50 cm from the end connected to the galvanometer \mathbf{G}.

(c) Close the switch, and use the jockey to touch one end of the wire \mathbf{W}, and then the other end. The deflections on the galvanometer should be in opposite directions, if not check the circuit. Adjust the positions of the jockey along the wire \mathbf{W} until there is no deflection in the galvanometer. Record the value of \mathbf{x} and \mathbf{y}.
$X=$ \qquad cm
$\mathrm{Y}=$ \qquad cm
(d) Repeat for other values of \mathbf{L} in the table

(e)(i) Plot a graph of $\frac{e^{2} \overbrace{}^{c^{s}} \boldsymbol{x}}{x}$ (y-axis) against, L

(ii) Determine the slope, \mathbf{m} of the graph.
(iii) Given that $\mathrm{K}=\underline{100} \mathrm{D}$, determine the value of \mathbf{K}

PART B

You are provided with the following apparatus

- A rectangular glass block
- Four optical pins
- A piece of soft board
- A plain sheet of papèr
- 4 thumb tacks

Proceed as follows

Place the plain sheet of paper on the soft board and fix it using the thumb tacks provided. Place the glass block at the centre of the sheet, draw its outline. Remove the glass block.

(ii) Draw normal at point 2 cm from the end of one of the longer side of the block outline.

Draw a line at an angle of $\theta=40^{\circ}$ from the normal. Stick two pins p_{1} and p_{2} vertically on this line.
By viewing through the glass from the opposite side stick two other pins p_{3} and p_{4} vertically such that they are in line with the images of the first two pins. Draw a line through the marks made by p_{3} and p_{4} to touch the outline. Extend the line $\mathrm{p}_{1} \mathrm{p}_{2}$ through the outline (dotted line).

Measure and record the perpendicular distance d_{1}, between the extended line and the line $\mathrm{p}_{3} \mathrm{p}_{4}$.
$\mathrm{d}_{1}=$ \qquad cm

Repeat the procedure in above $\theta=60^{\circ}$
Hence find $\mathrm{d}=\underline{\mathrm{d}}_{\underline{1}}+\mathrm{d}_{2}$
$=$ \qquad cm

NB: the sheet of paper with the drawing MUST be handed in together with the question paper.

Question 2 A

You are provided with the following apparatus

- Two metre rule (not half metre rafes)
- Two stands and two clamps
- Two bosses
- Three pieces of threadsx
- One optical pin
- A piece of cellotape (and or plasticine)
- A spring
- One mass of 200 g
- A stop wâatch.

Proceed as follows

(i) Set up apparatus as shown in the figure 1 below. Attach the pin (to act as the pointer) at one end of the metre rule using a cellotape.

(ii) Suspend one end of the metre rule with a thread at 5 cm mark from the end
(iii) Suspend the other end with spring also 5 cm from the end so that metere rule is horizontal.
(iv) Hold the other rule vertically on the bench so that it is near the end with apointer as shown in the diagram above.
(v) Read the pointer position, Lo \qquad cm
(a) Hang on the horizontal metre rule the 200 g mass at a length $\mathbf{I}=10 \mathrm{~cm}$ from the spring record the extension, \mathbf{e}, of the spring in the table below.
(b) Displace the mass slightly downward and release it to oscillate vertically. Take time for 20 oscillation and record in he table below.
(c) Repeat for other position of \mathbf{L}, of the mass.

NB: before taking the reading, ensure the oscillation is steady.

(vi) Plot a graph of extengion, e (m) (y-axis) against $\mathrm{T}^{2}(\mathrm{~s})^{2}$

(vii)Calculate the gradient of the graph
(viii) Given that $e=\frac{R T^{2}}{4 \pi^{2}}+\mathbf{C}$, determine the value of \mathbf{R}

Part B

(b) You are provided with a lens \mathbf{P} a lens hoofder a white screen and a 30 cm rule

Procedure:

(i) Set the apparatus as shownin figure 4 below. Focus a sharp image of a distant object on the screen. The object should be ât least 10 cm away.

(a) Measure he distance \mathbf{x} in cm between the lens and the screen at which a sharp image is obtained repeat this two times, using different objects and record your readings in table 3 below.

Table 3

Object	Distance X, (cm)
1	
2	

(ii) Calculate the average value of \mathbf{x}
(iii) What is the physical significance of the result obtained in (iii) above ?

