\qquad

SCHOOL

\qquad

DATE

121/2
MATHEMATICS

PAPER 2

JULY/AUGUST, 2014
TIME: $\mathbf{2}^{1 ⁄ 2} 2$ HOURS

TRANS-NŽZ

Kenya Certificate of Secondary Education

MATHEMATICS

PAPER 2

TIME: $2^{1 ⁄ 2}$ HRS.

INSTRUCTION TO CANDIDATE'S:

1. Write your name, index number and school in the spaces provided at the top of this page.
2. Sign and write the date of examination in spaces provided above.
3. This paper consists of two Sections; Section I and Section II.
4. Answer all the questions in Section I and any FIVE questions from Section II.
5. All answers and working must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculation, giving your answer at each stage in the spaces provided below each question.
7. Marks may be given for correct working even if the answer is wrong.
8. Non-programmable silent electronic calculators and KNEC Mathematical tables may be used, except where stated otherwise.
9. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

FOR EXAMINER'S USE ONLY:

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	20	21	22	23	24	TOTAL

GRAND TOTAL
\qquad

SECTION I: (50 MARKS)

Answer all the question in this section ajr the spaces provided:

1. Using logarithm tables only, evaluăte

$$
\sqrt[3]{\frac{849.6 \times 2.41}{3941}}
$$

2. Given that AB is parallel to DE . Calculate $\angle \mathrm{BCD}$.

3. Simplify $(1+\sqrt{3})(1-\sqrt{3})$ and hence evaluaf $\frac{1}{1+\sqrt{3}}$ to 3 significant figures given

$$
\sqrt{3}=1.7321
$$

4. If $(M+n):(M-n)=8: 3$. Find the ratio $M: n$.
5. Evaluate without using a Mathematical table or a calculator.
$\log _{6} 216+[\log 42-\log 6] \div \log 49$
(2 marks)
6. Make q the subject of the formula:

$$
P=\sqrt[3]{\frac{n q-m}{q}}
$$

The figure below shows a histogram

Use the histogram to complete the table below.

Length $\chi \mathrm{cm}$	Class width	Frequency density	Frequency
$7.5 \leq x<9.5$		1.2	24
$9.5 \leq x<11.5$			
$11.5 \leq x<15.5$			
$15.5 \leq x<21.5$			

8. If $\mathrm{A}=2.3, \mathrm{~B}=8.7$ and $\mathrm{C}=2.0$ find the $\%$ error in $\frac{A+B}{C}$.
9. Simplify:

$$
\frac{2 \chi^{2}+\chi-6}{\chi^{2}-4}+\frac{1}{\chi-2}
$$

10.

Obtain the binomial expansion of $(1-2 \chi)^{5}$ and use your expansion to evaluate $[0.98]^{5}$ correct to 5d.p.
(3 marks)
11. After being given a discount of sh. 5 on every book I bought, I was able to buy 2 more books than before I was given the discount with sh. 200 . What was the price of one book before the discount?
(4 marks)
12. Find the centre and radius of a circle with eqqation:

$$
\chi^{2}+y^{2}-6 \chi+8 y-11=0
$$

13. A car was valued at Ksh. 3000000 in January. Each year its value decreased by 12% of its value at the beginning of the year. Find the value of the car in January 2004 giving your answer correct to 4s.f.
14. Two similar containers have capacities of 1000 litres and 1728 litres respectively. If it costs Ksh. 750 to paint the outside surface of the smaller container, how much will it cost to paint the outside of the larger container.
15. A point $(-5,4)$ is mapped onto $(-1,-1)$ by a trainslation T. Find the image of $(-4,5)$ under the same translation.
16. The gradient of the curve $\mathrm{y}=\mathrm{a} \chi^{2}+\mathrm{b} \chi$ at the origin is equal to 8 . Find the value of a and b if the curve has a maximum turning point at $\chi=4$.

SECTION II: (50 MARKS)

Attempt ONLY FIVE questions from dhis section.
17. A plane S flies from a point $\mathrm{P}\left(40^{\circ} \mathrm{V}, 45^{\circ} \mathrm{W}\right)$ to a point $\mathrm{Q}\left(35^{\circ} \mathrm{N}, 45^{\circ} \mathrm{W}\right)$ and then onto a point $\mathrm{T}\left(\left(35^{\circ} \mathrm{N}, 135^{\circ} \mathrm{E}\right)\right.$.
(a) Given that the radius of the earth is 6370 km , find the distance from P to Q in km . (2 marks)
(b) Find in nm;
(i) the shortest distance between Q and T .
(ii) the longest distance between Q and T (to the nearest tens).
(c) Find the difference in time taken when S flies along the shortest and longest routes if its speed is 420 knots.
18. In the figure below, O is the centre of the cirede. $P Q$ and $P R$ are tangents to the circle at P and R respectively. Angle $\mathrm{PQS}=40^{\circ}$ and angle ${ }^{\circ} \mathrm{RS}=30^{\circ}$. RTU is a straight line.

Find giving reasons the angles
(i) QRS.
(2 marks)
(ii) RTQ.
(iii) RPQ .
(iv) Reflex angle QOR.
(v) TRO given that $\mathrm{TR}=\mathrm{TQ}$.
19. The data below shows the masses in grams of ${ }^{c}(0)$ potatoes.

Mass (g)	$25-34$	$35-44$	$45^{2}-54$	$55-64$	$65-74$	$75-84$	$85-94$
No. of potatoes	3	6	dil				

(a) On the grid provided dzan a cumulative frequency curve for the data.

(b) Use the graph in (a) above to determiné:
(i) The $60^{\text {th }}$ percentile mass.
(ii) Percentage of potatoes whose masses lie in the range 53 g to 68 g .
(iii) Median mass.
20. Matrix P is given by $\left(\begin{array}{ll}4 & 7 \\ 5 & 8\end{array}\right)$
(a) Find the inverse of P .

Two Schools Theri and Kimathi purchased beans at sh.B per bag and maize at sh.M per bag. Theri purchased 8 bags of beans and 14 bags of maize for sh.47,600. Kimathi purchased 10 bags of beans and 16 bags of maize for sh.57,400.
(i) Form a matrix equation to represent the information above.
(ii) Use the inverse matrix of P to find the prices of one bag of each item.
(4 marks)
(c) The price of beans later went up by 5% and that of maize remained constant. Theri bought the same quantity of beans but spent the same total amount of money as before as before on the two items. State the new ratio of beans to maize.
(2 marks)
21. Mr. Karanja owns a bicycle which he sometighes rides to go to work. Out of the 21 working days in a month he only rides to work for 18 dass. If he rides to work the probability that he is bitten by a rabid dog is $4 / 15$ otherwise it is ofly $1 / 13$. When he is bitten by the dog the probability that he will get treatment is $4 / 5$ and iff he does not get treatment the probability that he will get rabies is $5 / 7$.

(a) Draw a tree diag $\frac{a t}{} \mathrm{~m}$ to show the events.

(b) Using the tree diagram in (a) above determine the probability that (i) Karanja will not be bitten by a rabid dog.
(2 marks)
(ii) He will get rabies.
(iii) He will not get rabies.
(3 marks)
22. In an examination consisting of two papers Asfand B both marked out of 100, a candidate is given χ marks in Paper A and y marks in Boper B. A pass mark is obtained if $\chi+2 \mathrm{y}$ is at least 150 but candidates must score ofer 30 marks in Paper A and 40 marks in Paper B.
(a) Form the inequalities to represent the conditions above.
(b) Repressént these inequalities graphically.

(c) Find the lowest values of $\chi+\mathrm{y}$ for any candidate who passes and give the corresponding values of χ and y.
 angle $\mathrm{CAB}=50^{\circ}$.

Câłculate (to 2d.p.)
(a) the length BC.
(b) the size of angle ABC .
(c) size of angle CAD.
(d) Calculate the area of triangle ACD.
24. (a) Three variables P, R and S are such that P varies directly as R and inversely as cube of S. When $R=10, S=2$ and $P=2.5$, fibid R when $P=15$ and $S=5$.
(b) Two variables P and L are such that P varies partly as L and partly varies as the square root of L. Determine the relationship between P and L given that $L=16$ when $P=500$ and $\mathrm{L}=25$ when $\mathrm{P}=800$.
(4 marks)
(c) R varies as the square of S. If S is increased by 10%, find the ratio of the new value of R to the original R.

