\qquad
SCHOOL \qquad
DATE
232/1
PHYSICS
PAPER 1
(THEORY)
JULY/AUGUST 2014
TIME: 2 HOURS

TRANS-NZOIA COUNTY JOINT EVALUATION EXAMINATION-2014

Kenya Certificate of Secondary Education

PHYSICS

PAPER 1
(THEORY)
TIME: 2 HOURS

INSTRUCTIONS TO THE CANDIDATE:

(a) Write your name and index number in the spaces provided above.
(b) Sign and write the date of examination in the spaces provided above.
(c) This paper consists of two Sections A and B.
(d) Answer all the questions in sections \mathbf{A} and \mathbf{B} in the spaces provided.
(e) All working must be clearly shown in the spaces provided.
(f) Non-programmable silent electronic calculators and KNEC Mathematical tables and may be used.

FOR EXAMINER'S USE ONLY:

Section	Question	Maximum Score	Candidate's Score
A	1-10	25	
B	11	10	
	12	9	
	13	14	
	14	12	
	15	10	
Total Score		80	

SECTION A: (25 MARKS)

Answer all questions in this section in the spaces provided:

1. The diagram below shows a micrometer screw gauge used by a student to measure the thickness of a wire. If it has a zero error $8 f-0.06 \mathrm{~mm}$, what is the actual thickness of the wire.

Fig. 1
 to extend it by 2.5 cm .
3. Use the diagram below to answer the question below.

Fig. 2
(i) State the aim of this experiment.
(ii) At the start of the experiment, the region below the beaker had no hydrogen gas. The hydrogen gass from a gas generator is now introduced for sometime. State the observation made.
(iii) Give a reason for your answer.
\qquad
\qquad
\qquad
4. Figure $\mathbf{3}$ below shows a marble placed on an inverted bowl.

Fig. 3

State and explain the type of equilibrium the marble is in. (2 marks)
\qquad
\qquad
\qquad
\qquad
5. (a) Define the moment of a force.
\qquad
\qquad
(b) A uniform metre rule of mass 100 g is 6 balanced by suspending a 10 g mass and a 20 g mass on its ends as shown below.

Fig. 4
Determine the position of the pivot.
6. Figure $\mathbf{5}$ below shows a simple bimetallic thermostat used for detecting fire.

Fig. 5
Describe how the fire alarm works.
\qquad
\qquad
\qquad
\qquad
7. (a) State one assumption made in Bernoudfi's fluid flow.

(b) "Air flow over the wings of an aircraft causes a lift. Explain this statement with an aid of a well labelles ďiagram.
8. The following figure represents a spiral spring being rotated in a horizontal circle at uniform speed. The length of the spiral spring including a mass of 50 g at its end is 0.2 m . The spring constant is $0.5 \mathrm{~N} / \mathrm{cm}$. Determine the extension produced when the spring rotates at a speed of $4 \mathrm{~m} / \mathrm{s}$ and radius 1 m .
(3 marks)

9. A concrete block of mass 50 kg rests on the suriface of the table as shown below.

What is the na ${ }^{5}$ simum pressure that can be exerted on the bench by the block?
10. When an inflated balloon is placed in a refrigerator it is noted that its volume reduces.

Use the kinetic theory of gases to explain this observation.
\qquad
\qquad
\qquad
\qquad

SECTION B: (55 MARKS)

Answer question in this section in the spaces provided.
11. (a) State the pressure law of an ideal gas.
\qquad
\qquad
\qquad
(b) $\quad \mathrm{A} 30^{\circ} \mathrm{C}$ the pressure of a gas is 100 cm of mercury. At what temperature would the pressure of the gas fall by 20 cm of mercury. Give the temperature in ${ }^{\circ} \mathrm{C}$.
(c) A hole of area $4.0 \mathrm{~cm}^{2}$ at the bottom gf
 water $=1000 \mathrm{kgm}^{3}$).
(d) A measuring cylinder of height 25 cm is filled to a height of 15 cm with water and the rest is occupied by kerosene. Determine the pressure acting on its base (density of water $=$ $1 \mathrm{gcm}{ }^{3}$ density of kerosene $=0.8 \mathrm{gcm}^{3}$ and atmospheric pressure $=103,000 \mathrm{pa}$). (3 marks)
12. The figure below shows the same block weighed in air, water and liquid. Given that the reading of the level of water becomes $150 \mathrm{~cm}^{3}$ when the metal is fully immersed.

c)

(a) Determine:
(i) Density of the metal.
(ii) Water level before the solid was immersed.
(iii) Explain why the spring balance gives different reading in figure (b) and (c) with the same metal block.
(2 marks)
13. (a) A boy throws a tennis ball vertically upwards from a truck moving at a constant velocity. Give the reason why the ball lands back exactly the same point where it was projected.
(1 mark)
\qquad
\qquad
\qquad
(b) Define impulse in terms of momentum.
\qquad
\qquad
\qquad
(c) A trailer of mass 30 tonnes travelling at a velocity of $72 \mathrm{~km} / \mathrm{hr}$ rams onto a stationary bus of mass 10 tonnes. The impact takes 0.5 seconds before the two vehicles move off together at a constant velocity for 15 seconds. Determine.
(i) the common velocity.
(ii) the distance moved after the ing act.
(iii) the impulsive force on the trailer on impact.
(d) Give the reasons why a safety seat belt used in a vehicle;
(i) should have a wide surface area.
\qquad
\qquad
\qquad
(ii) should be slightly extensible.
\qquad
\qquad
\qquad
(e) Give a reason why, when a passenger jumps from a floating boat, the boat moves backwards. Give a reason for this.
\qquad
\qquad
\qquad
(f) A steel ball is dropped into a cylindersontaining oil. Sketch on the axis given below a graph showing the variation of acceleration with time.
(a) State two ways through which the rate of evaporation of a liquid may be increased. (2 marks)
\qquad
\qquad
\qquad
\qquad
(b) A metal of mass 10 kg is heated to $120^{\circ} \mathrm{C}$ and then dropped into 2 kg of water. The final temperature of the mixture is found to be $50^{\circ} \mathrm{C}$. Calculate the initial temperature of the water. (Specific heat capacity of the metal and water is $450 \mathrm{JKg}{ }^{1} \mathrm{~K}^{1}$ and $4200 \mathrm{JKg}{ }^{1} \mathrm{~K}{ }^{1}$ respectively).
(3 marks)
(c) Give the property of water which makes it suitable for use as a coolant in machines. (1 mark)
\qquad
\qquad
(d) Formation of ice on roads during winter in cold countries is known to hamper vehicles.

State two ways in which the meltine point of ice may be lowered to solve this problem.
(s) (2 marks)

(f) Some ether is put in a combustion tube and two glass tubes inserted into the tube through a cork as $\operatorname{sho} \theta$ wn in the figure below. The combustion tube is then put into a small beaker containing some water and a thermometer dipped in the water. When air is blown into the ether shown, the reading in the thermometer lowers. Explain this observation. (2 marks)

(g) State two differences between heat and temperature.
\qquad
\qquad
\qquad
\qquad
15. The figure below shows a machine being usef to raise a load. Use the information given in the figure to answer questions below.

(a) Determine the velocity ratio (V.R) of the machine.
(b) If a load of 800 N is raised by applying an effort of 272 N , determine the efficiency of the machine.
(c) A crane lifts a load of 2000 kg through a vertical distance of 3.0 m in six seconds. Determine
(i) work done.
(2 marks)
(ii) Power of the crane.
(d) Name the transducer that is used to convert the following form of energies.
(i) Electrical to sound.
(ii) Electrical to kinetic.

