| gers. com                                                                      |                                  |
|--------------------------------------------------------------------------------|----------------------------------|
| Name:                                                                          | Index No:  Candidate's Signature |
| School Except                                                                  | Date:                            |
| Name: School:  233/1 CHEMISTRY Paper 1 (Theory) July/August 2014 Time: 2 Hours |                                  |
| re fitee to see                                                                |                                  |

## TRANS-MARA WEST ASSESSMENT TEST (TWAT)

Kenya Certificate of Secondary Education (K.C.S.E)

## **CHEMISTRY**

Paper 1 July/August 2014 **Time: 2 Hours** 

## **INSTRUCTIONS TO CANDIDATES:**

- Answer all the questions in the spaces provided.
- Write your name and index number in the spaces provided above.
- Mathematical tables and electronic calculators may be used for calculations.
- All workings **must** be clearly shown where necessary

## For Examiner's Use only:

| QUESTION | MAXIMUM SCORE | CANDIDATE'S SCORE |
|----------|---------------|-------------------|
| 1 – 30   | 80            |                   |

This paper consists of 11 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

Using dots and cross diagram, show how a hydro-axonium ion, H<sub>3</sub>O<sup>+</sup> is formed

(H=1, O=8)

(2 marks)

Hint:  $H_2O + H^+ \longrightarrow H_3O^+$  Atomic numbers

3.

a)

|     |                                         | con.                                                                                                                                                                          |                                         |
|-----|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|     |                                         | Age <sup>te</sup>                                                                                                                                                             |                                         |
|     | b)                                      | What name is given to the bonding in (a) above.                                                                                                                               | (1 mark)                                |
|     |                                         | *Coset                                                                                                                                                                        |                                         |
|     |                                         | , E. C.                                                                                                                                                                       |                                         |
| 4.  | In the                                  | e redox reaction below:                                                                                                                                                       |                                         |
|     |                                         | $2H^{+}_{(aq)} + Cr_{2}O_{7}^{2}_{(aq)} + 3SO_{2}_{(aq)} \longrightarrow Cr_{(aq)}^{3+} + 3SO_{4}^{2-} + H_{2}O_{(l)}$ ify the reducing agent, explain your answer. (2 marks) |                                         |
|     | Identi                                  | ify the reducing agent, explain your answer. (2 marks)                                                                                                                        |                                         |
|     |                                         | <sup>2</sup>                                                                                                                                                                  |                                         |
|     | ڔڿٛٷ                                    | >                                                                                                                                                                             |                                         |
|     | e.                                      |                                                                                                                                                                               |                                         |
| 5e  | 60cm<br>sulph<br>(S=3                   | of oxygen gas diffused through a porous hole in 50 seconds. How long will it take our (iv) oxide to diffuse through the same hole under the same conditions. 32.0. O=16.0)    | te 80cm <sup>3</sup> of (3 marks)       |
| €°° |                                         |                                                                                                                                                                               |                                         |
|     | •••••                                   |                                                                                                                                                                               | • • • • • • • • • • • • • • • • • • • • |
|     | • • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                               |                                         |
|     | •••••                                   |                                                                                                                                                                               |                                         |
| 6.  | Calcu                                   | plate the heat of formation of carbon (II) oxide from the following data. $C_{(s)} + O_{2(g)} \longrightarrow CO_{(g)}  H = -394.8 kj/mol$                                    | (2 marks)                               |
|     |                                         | $CO_{(g)} + 1/2O_{2(g)} \longrightarrow CO_2  H = -285.6$ kj/mol                                                                                                              |                                         |
|     | •••••                                   |                                                                                                                                                                               |                                         |
|     | •••••                                   |                                                                                                                                                                               |                                         |
|     |                                         |                                                                                                                                                                               |                                         |
|     | •••••                                   |                                                                                                                                                                               | •••••                                   |
| 7.  | a)                                      | Draw and name the structure of the compound formed when one mole of ethyne one mole of hydrogen bromide.                                                                      | reacts with (1 mark)                    |
|     | •••••                                   |                                                                                                                                                                               | ••••••                                  |
|     | b)                                      | Draw and name the structural isomers of C <sub>4</sub> H <sub>8</sub>                                                                                                         | (2 marks)                               |
|     | •••••                                   | ······································                                                                                                                                        |                                         |
|     |                                         |                                                                                                                                                                               |                                         |
|     |                                         |                                                                                                                                                                               |                                         |
|     |                                         |                                                                                                                                                                               |                                         |

|                                                    | TI 4 ( ©                                                                                                    |                  |                    | 7                           |                                         |              |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------|--------------------|-----------------------------|-----------------------------------------|--------------|
|                                                    | Element & Atomic number                                                                                     | w x<br>9 10      | 11                 | Z<br>12                     |                                         |              |
| a) Which                                           | one of the elements is leas                                                                                 | t reactive? Exp  |                    |                             |                                         |              |
| <br>پر                                             | ¢og <sup>©</sup>                                                                                            |                  |                    |                             | • • • • • • • • • • • • • • • • • • • • |              |
| b) (P) (P) (P) (P) (P) (P) (P) (P) (P) (P          | Which <b>two</b> elements wo                                                                                | uld react most   |                    | •                           |                                         |              |
|                                                    |                                                                                                             |                  | •••••              | •••••                       |                                         |              |
| (ii)                                               | Give the formula of the                                                                                     | compound for     | ned whe            |                             |                                         |              |
| (ii)                                               | ty of potassium nitrate is 85                                                                               |                  |                    |                             |                                         |              |
| (ii)                                               |                                                                                                             |                  |                    |                             |                                         |              |
| (ii) The solubili a) Define t                      | ty of potassium nitrate is 85<br>he term solubility.                                                        | /g/100g of wat   | er at 50°          | c and 32                    | 2g/100g of w                            | vater at 25  |
| (ii) The solubili a) Define t b) Calculat          | ty of potassium nitrate is 85 he term solubility.  the the mass of the crystals for 50°c is cooled to 25°c. | g/100g of wat    | er at 50°          | c and 32                    | 2g/100g of w                            | vater at 25° |
| (ii) The solubili a) Define t b) Calculat          | ty of potassium nitrate is 85 he term solubility.  te the mass of the crystals for 50°c is cooled to 25°c.  | /g/100g of wat   | er at 50°          | c and 32                    | 2g/100g of w                            | vater at 25° |
| (ii) The solubili a) Define t b) Calculat          | ty of potassium nitrate is 85 he term solubility.  te the mass of the crystals for 50°c is cooled to 25°c.  | g/100g of wat    | er at 50°          | c and 32                    | 2g/100g of w                            | vater at 25° |
| (ii) The solubili a) Define t b) Calculat water at | ty of potassium nitrate is 85 he term solubility.  te the mass of the crystals for 50°c is cooled to 25°c.  | ormed if a satu  | er at 50°          | c and 32                    | 2g/100g of w                            | vater at 25  |
| (ii) The solubili a) Define t b) Calculat water at | ty of potassium nitrate is 85 he term solubility.  te the mass of the crystals for 50°c is cooled to 25°c.  | ormed if a satur | er at 50° ated sol | c and 32 ution of  es x and | 2g/100g of w                            | vater at 25° |

y

|           |         | agerts. com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|           | Mixt    | ure w contains dyes y and z only. Complete the chromatogram to show how mix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ture w separates                         |
|           | 1411740 | A. Ereckche in the communication of the communicati | (2 marks)                                |
|           |         | A Thirt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |
| 24.       | a)      | State and explain the observations made when fluorine gas is bubbled through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sodium                                   |
|           |         | bromide solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2 marks)                                |
|           |         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
|           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|           | 4.CS\$  | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| t More Er | b)<br>  | When excess ammonia solution is added to a solution of copper (ii) ions, a deforms. Write the formula of the complex ions formed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1 mark)                                 |
| 25.       | comp    | cm $^3$ of sodium hydroxide solution containing 4.0g per litre sodium hydroxide we plete neutralisation of 0.1g of a dibasic acid. Calculate the relative formula mass (Na = 23, O=16, H=1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | re required for of the dibasic (3 marks) |
|           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|           | •••••   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 26.       | The f   | following reaction is in equilibrium in a closed container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
|           | 2SC     | $O_{2(g)} + O_{2(g)} \rightleftharpoons 2 SO_{3(g)} \Delta H = -Ve$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |

| State giving reasons how an increase in temperature would affect the amount of sulphur |        |  |  |  |
|----------------------------------------------------------------------------------------|--------|--|--|--|
| (VI) oxide gas.                                                                        | (2mks) |  |  |  |
|                                                                                        |        |  |  |  |
|                                                                                        |        |  |  |  |
|                                                                                        | •••••  |  |  |  |
|                                                                                        |        |  |  |  |



(1mk) .....

Name **one** suitable catalyst that can be used. (1mk)

28. The following are half cell reactions and their reduction potentials. The letters are not the actual symbols of the elements)

(i) 
$$Z^{2+}_{(aq)} + 2e^{-} \longrightarrow Z_{(s)} - 0.76$$

(ii) 
$$M^{2+} + 2e^{-} \longrightarrow M_{(s)} - 0.13$$

(iii) 
$$S^+ + e^- \longrightarrow S_{(s)} +0.80$$

(iv) 
$$T^{2+} + 2e^{-} \longrightarrow T_{(s)} + 0.30$$

Write the cell representation for the electrochemical cell that would give the highest E a) (1mk)

Calculate the E value for the cell represented in 5(a) above. (2mks) b)