| | o é | NUMBER | |------|--------|-----------| | NAME | 0,0,4 | SIGNATURE | | | eetcee | DATE | 231/1 BIOLOGY PAPER 1 TIME: 2 HRS JULY/AUGUST 2014 ESTLANDS FORM 4 JOINT EXAMINATION Kenya Certificate of Secondary Education ## **BIOLOGY** Paper 1 (Theory) JULY/AUGUST 2014 Time: 2 hours ## INSTRUCTIONS TO CANDIDATES - a) Write your name and index number in the spaces provided at the top of this paper. - b) There are eight (8) printed pages. Ensure that all pages are printed. - c) Write the date of examination in the spaces provided above. - d) Answer all the questions in the spaces provided in the question paper. - e) Additional papers must not be inserted ## FOR EXAMINER'S USE ONLY | Question | Maximum Score | Candidates Score | |----------|---------------|------------------| | 1-26 | 80 | | This paper consists of 8 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and that no questions are missing. | | 9 | e Roasi | ¥ | | | | |-----------------------------|--|--------------------------------|--|--|-----------------|-----------| | a) S | tate two roles of interphase | in cell division | | | age of the | (2 mks) | | | | a, | | | | | | b) S | State the significance of Me | iosis in cell divi | sion. | | | (1 mk) | | | () | | | | ······ | | | The | 1: | | | | | | | | e diagram below shows a su | 100 | | | 4 | | | e | , | | P | | | | | \$.C. | | (((8 | | | | | | | | | T-4 | | | | | W 623 | | 00 | | | | (1 mk) | | a) T | dentify nort lobelled V | | | | | | | a) I | dentify part labelled P. | | o ^c = * | | 1 //2 | (* *****) | | | e area | | 0 5 = 5 | - 7 - 7 - 50 | 1 100 | | |
b) I | Explain the changes that tak | | | | | (2 mks | | b) F | Explain the changes that tak | | 137 | 222 | | (2 mks | | b) F | Explain the changes that tak | | 137 | 222 | | (2 mks | | b) F i) C ii) (| Explain the changes that take Changes in P | | | Est Service | A SARR | (2 mks | | b) F i) C ii) (| Explain the changes that take Changes in P | en the volume of | of air in the tl | horacic cavity in | ncreases whi | (2 mks | | b) F i) C ii) (| Explain the changes that take Changes in P | en the volume of | of air in the tl | horacic cavity in | ncreases whi | (2 mks | | b) F i) C ii) (| Explain the changes that take Changes in P | en the volume of | of air in the tl | horacic cavity in | ncreases whi | (2 mks | | b) F i) C ii) (| Explain the changes that take Changes in P | en the volume of | of air in the tl | horacic cavity in | ncreases whi | (2 mks | | b) F i) C ii) (| Explain the changes that take Changes in P | en the volume of the above men | of air in the the the thickness of air in the the | horacic cavity in | ncreases whi | (2 mks | | b) F i) C ii) (Inh dec | Explain the changes that take Changes in P | en the volume of the above men | of air in the the the thickness of air in the the | horacic cavity in the can take place | ncreases whi | (2 mks | | b) F i) C ii) (Inh dec | Explain the changes that take Changes in P | en the volume of the above men | of air in the the thickness | horacic cavity in | ncreases whi | (2 mks | | b) F i) C ii) (Inh dec | Explain the changes that take Changes in P | en the volume of the above men | of air in the the the theorem of air in the the theorem of the | horacic cavity in es can take place | ncreases whi | (2 mks) | | b) F i) C ii) (Inh dec | Explain the changes that take Changes in P | en the volume of the above men | of air in the the thickness of air in | horacic cavity in | ncreases whi | (2 mks | | b) F i) C ii) (Inh dec Exp | Explain the changes that take Changes in P | en the volume of the above men | of air in the the thickness of air in | horacic cavity in | ncreases whi | (2 mks | | b) F i) C ii) (Inh dec Exp | Explain the changes that take Changes in P | en the volume of the above men | of air in the the thickness of air in | horacic cavity in | ncreases whi | (2 mks | | b) F i) C ii) (Inh dec | Explain the changes that take Changes in P | to have the foll | of air in the the thickness of air in | horacic cavity in the can take place and take place are take place are taken as a second control of the capacity and the capacity are taken as a second control of the capacity and taken are taken as a second control of the capacity and taken are taken as a second control of the capacity are taken as a second control of the capacity and taken are taken as a second control of the capacity | ncreases whi | (2 mks) | | b) F i) C ii) (Inh dec Exp | Explain the changes that take Changes in P | to have the foll | of air in the the thickness of air in | horacic cavity in the can take place and take place are take place are take place are taken pl | ncreases while. | (2 mks) | | b) With a reason, state the mode of feeding of the animal. | (2 mks) | |--|---------| | i) Mode of feeding | | | i) Mode of feeding | | | 12. The diagram below shows a section through a structure in a plant. | 5 | | 12. The diagram below shows a section through a structure in a plant. M N N Recent Carrier in a plant. | | | estro. | | | a) Name the part of the pant from which the section was obtained. Give a reason | (2 mks) | | i) Part | •••••• | | ii) Reason | | | b) State the functions of parts labelled M. | (1 mk) | | 13. State one similarity and one difference between osmosis and diffusion. | и | | a) Similarity | (1mk) | | b) Difference | (1 mk) | | 14. a) Mention functions of the following parts of a light microscope.i) Fine adjustment knob | (1 mk) | | ii) Condenser | (1 mk) | | b) State two precautions that should be taken when storing a light microscope in t | | | | (2 mks) | | | | | 15. | Explain how loss of body heat can be reduced by vasoconstriction of blood capillaries during cold weather. | in the skin
(2 mks) | |------|--|------------------------| | | and the second s | ••••••• | | 16. | a) Explain why members of the phylum arthropoda are able to occupy a large variety of ha | bitats.
(2 mks) | | | i i i i i i i i i i i i i i i i i i i | | | | | | | | b) The diagram below shows a certain plant. | | | vore | ALLE . | | | | i) Name the division in the kingdom Plantae to which the plant belongs. | (1 mk) | | × 5 | ii) State the function of structures labelled L. | (1 mk) | | 17. | a) Two tall pea plants were crossed and 75% of the offspring were tall while the rest were Using letter (T) to represent gene for tallness, state the genotypes of the parents. | | | | | | | | | | | | b) What is artificial selection? | (1 mk) | | | | | | 18. | a) What is metamorphosis? | (1 mk) | | - | | | | | b) What is the biological significance of metamorphosis to an insect. | (2 mks) | | | | | | 9. a) State two functions of Luteinizing hormone of | er and monitorious systems | (2 mks) | |---|---|---| | d Contract of the | = | | | 9. a) State two functions of Luteinizing hormone of | | | | b) State the functions of the following structure pregnancy. | s in the umbilical cord in the h | uman female during | | programey. | | (1 mk) | | i) Umbilical artery | | (1 mk) | | 11) Umbilical vein. | *************************************** | | | 20. In an investigation, a student collected two pla sunken in pits into the leaf epidermis while leaf | nts A and B. Plant A had hairy aves of plant B were broad and | leaves and few stomata
many stomata on upper | | surface only. | | Na. | | a) In which habitat would you find; | | av | | & i) Plant A | | (1 mk) | | ii) Plant B | | (1 mk) | | 11) 1 talle 2 | | | | b) What is the significance of hairs on leaves of | f mlant A | (1 mk) | | | | | | | | | | 21. State two ways in which nephrons of animals | inhabiting dry areas are modif | ied to conserve water.
(2 mks) | | 21. State two ways in which nephrons of animals | inhabiting dry areas are modif | ied to conserve water.
(2 mks) | | 21. State two ways in which nephrons of animals | inhabiting dry areas are modifications and amount of dilute hydroclesses added drop by drop until | ied to conserve water. (2 mks) nloric acid and allowed to the fizzing stopped. Fev | | 21. State two ways in which nephrons of animals 22. A solution of sugar cane was boiled with a scool. Sodium hydrogen carbonate solution drops of Benedict's solution were added to the end of the experiment. | inhabiting dry areas are modifications are modifications are modificated amount of dilute hydroches and boiled. An orange of the mixture and boiled. An orange of the mixture and boiled. | ied to conserve water. (2 mks) nloric acid and allowed to the fizzing stopped. Few ange precipitate formed and allowed to the fizzing stopped. | | 21. State two ways in which nephrons of animals 22. A solution of sugar cane was boiled with a scool. Sodium hydrogen carbonate solution drops of Benedict's solution were added to the end of the experiment. a) What was the role of the following in the end of billowing in the end of the hydrochloric acid. | inhabiting dry areas are modificant amount of dilute hydrock was added drop by drop until the mixture and boiled. An orangement? | ied to conserve water. (2 mks) nloric acid and allowed to the fizzing stopped. Few ange precipitate formed at (1 mk) | | 21. State two ways in which nephrons of animals 22. A solution of sugar cane was boiled with a scool. Sodium hydrogen carbonate solution drops of Benedict's solution were added to the end of the experiment. a) What was the role of the following in the end of the hydrochloric acid. | inhabiting dry areas are modificant amount of dilute hydrock was added drop by drop until the mixture and boiled. An orangement? | ied to conserve water. (2 mks) nloric acid and allowed to the fizzing stopped. Few ange precipitate formed at (1 mk) | | 21. State two ways in which nephrons of animals 22. A solution of sugar cane was boiled with a scool. Sodium hydrogen carbonate solution drops of Benedict's solution were added to the end of the experiment. a) What was the role of the following in the end of billowing in the end of the hydrochloric acid. | inhabiting dry areas are modificant amount of dilute hydrock was added drop by drop until the mixture and boiled. An orangement? | ied to conserve water. (2 mks) nloric acid and allowed to the fizzing stopped. Few ange precipitate formed at (1 mk) | | | | | 3 | contr | | | | |----------------|-------------------------------------|----------------------|---------------------|--------------------|---|---|---------------| | 23. | The diagrams l
questions that fo | below show
ollow. | embryos of cert | aine vertebrate* a | nimals. Examine t | them and ans | wer the | | | × | fish | tortoise | chick | human | | | | | | Certo | wind ore | O'AN THE | Commercial | | | | | a) Mention two
ancestral ori | gin. | structural features | | os that suggest that | they have a c | ommon
mks) | | | · CC | | | | | ••••••• | | | o ^ş | | menon in org | | being exhibited l | by these diagrams of | of the embryos | | | 24. | | | y are relay neuron | es found? | | X ** | mk) | | | b) State the surv | vival value c | of these responses | | | | | | | i) Phototr | ophism. | | | | | mks) | | | | | | | | Q. | | | | ii) Chemo | otakism | | | | (2 | mks) | | | | | | | •••••• | *************************************** | ********* | 25. State three functions of an exoskeleton in members of the phylum arthropoda. (3 mks) (1 mk) | | •••••• | | |---|---|-----------| | eb) Give two reasons for your answer. | ø | (2 mks) | | | | ••••••••• | | c) State a functional difference between a tendon and a ligament. | *************************************** | (1 mk) | | | | | | | | ā |