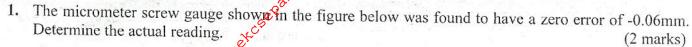
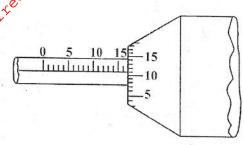
Name	Index No.
232/1 PHYSICS	Candidate's Signature
Paper 1 July/August 2014	Date
Time: 2 Hours	
e Acst Pagers Vi	
Page ,	
tee Acco	
0'	RM 4 JOINT EXAMINATION cate of Secondary Education

WESTLANDS FORM 4 JOINT EXAMINATION

Kenya Certificate of Secondary Education

PHYSICS

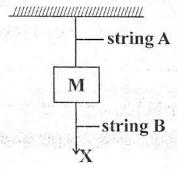

Paper 1 July/August 2014 Time: 2 Hours


INSTRUCTIONS TO CANDIDATES

- Write your name and index number and date in the spaces provided above.
- This paper consists of two sections; A and B
- Answer all the questions in section A and B in the spaces provided.
- All working **must** be clearly shown.
- Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

For Examiner's Use Only

Section	Question	Maximum score	Candidate's score
Α	1 - 13		
	14		
В	15		
-	16		
	17	Let 2 1 Eq. (5.2)	
T	otal	80	

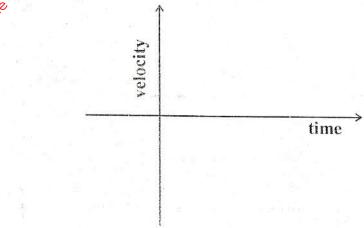


State two factors that determine the moment of a force.

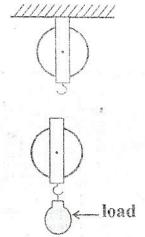
(2 marks)

3. Jane closed a tin with a lid when the tine had steam. She realised that it was not easy to open the lid when the tin had cooled. Explain. (2 marks)

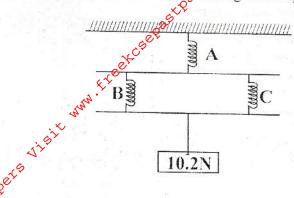
Two identical strings A and B are attached to a mass M as shown in the figure below.



If the string B is suddenly pulled downwards from point X, state and explain which string is likely to break first. (2 marks)

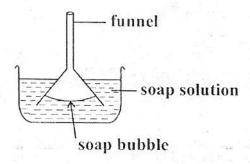


6. An object is thrown vertically upwards. On the axis below, sketch a graph of velocity against time for the object from the time the object, was released to the time it touches the ground assuming no air resistance.


(2 marks)

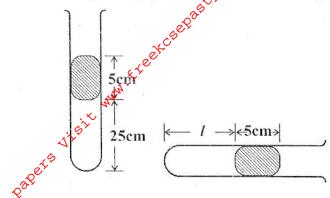
- 7. State a change you would make in constructing a mercury thermometer so that it can measure smaller changes of temperature. (1 mark)
- 8. The figure drawn below shows part of incomplete pulley system. Complete the diagram for the pulley system of velocity ratio 2. (1 mark)

9. Three light identical spring balances A, B and C are arranged as shown below. A weight of 10.2N is supported by the arrangement. What is the reading of the spring balances A and B. (2 marks)



10.2N

10. A body has 16 joules of kinetic energy. What would be its kinetic energy if its velocity is doubled.


(3 marks)

11. Figure below shows a funnel dipped into a liquid soap solution.

Explain what happens to the soap bubble when the funnel is removed. (2 marks)

12. A column of air 25cm long is trapped by mercury thread 5cm long as shown in the figure below. When the tube is laid horizontally as in (b) the air column now changes.

If the atmospheric pressure in that place is 100000N/m² and the density of mercury is 13.6g/cm³. Calculate the new length, l, of the air column when the tube is in the horizontal position. (3 marks)

note stee

13.	Explain how surface tension of water may be increased.	(1 mark)

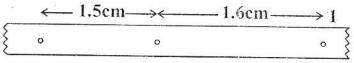
SECTION B: (55 Marks)

- 14. a) A man standing on a railway station platform at the front of a train of length 200m. The train starts from rest and accelerates uniformly. After 20 seconds the rear of the train passes the man. Find:
 - i) the acceleration of the train

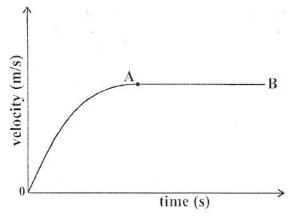
(2 marks)

ii) the speed of the train after the 20 seconds

(2 marks)


b) i) The figure below shows a ticker-tape representing the motion of a trolley of mass 2kg.

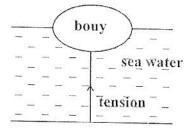
Given that the ticker a frequency of 50Hz, determine the acceleration of the trolley. (3 marks)


Pagers

ii) The trolley is then loaded with a mass M and the resulting motion is as shown in the ticker tape below.

Assuming that the accelerating force remains constant, determine the mass m. (4 marks)

c) The figure below is a sketch of the velocity-time for a steel ball falling through a column of some viscous liquid.

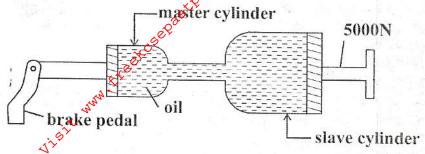


i) State two constant forces acting on the steel ball. (2 marks)

.....

ii) Define the term terminal velocity (Vt) and indreate its position on the diagram above	. (2 marks)
Arcte to a	
Etc.	h s
iii)Write down the equation relating forces acting on the ball, mass of the ball and its ac between O and A.	celeration (1 mark)
200 × 200 ×	
15. a) State the Archimedes principle.	(1 mark)
\$ ^e	
b) A rectangular block of metal has the dimensions 10cm x 4cm x 5cm and has a mass block is suspended from a spring balance while completely immersed in a liquid of density 0.8g/cm ³ .	
i) Determine the reading of the spring balance in Newtons.	(4 marks)

c) The figure below shows a bouy of volume 40 litres and mass 10kg. It is held in position in sea water of 1.04g/cm³ by a light cable fixed to the bottom so that ³/4 of the volume of the bouy is below the surface of water.


Determine the tension.

(3 marks)

	d) A rod of wood weighe 0.4cm ² . Calculate the l	d to float upright has a mength of the rod inveners	nass of 5g and a unif ed when it floats in v	orm cross-section water of density 1	area of .03g/cm ³
		ength of the rod immerse		-	(3 marks)
		excr			
		£20			
		with the same of t	2		% 770
	, o ^j	V	8		
	19 A			***	
	a er				
	capacing of 30m ³ and i determine the maximu \$689kg/m ³ density of	y instruments for meteorous filled with hydrogen. If m weight of the instrument air is 1.29kg/m³ and g =	the weight of the fa	bric of the balloo	n is 300N
4	it e			.528	
Ç					
	*	*			
					5 8
					a v
VI.					9.42
16	. a) Define angular displac	ement and state its SI un	it.		(2 marks)
					134
			••••••		
	Calculate:	mass has a bucket tied to eket is made to swing hor	its end. The string is rizontally making 6	s 60cm long and t revolutions per se	he bucket has cond.
	i) The angular velocity				(1 mark)
				V ₁ = 7	
					W E
	ii) The angular acceleration	on			(2 marks)

i)The tension in the string	0.00		(2 marks)
i) The linear velocity Past Past Past Past Past Past Past Past	ABY		
	, se ^Q		
	et C		
	* the		
	why.		
)The linear velocity	3.0		(2 marks
) The inical velocity			(2 marks
20			
000			
ag ^X			
Q ⁰			5 1 No
TC22			
Defige centripetal force.			(1 mark
C. C.			
Çe			
	196	1 A May 2 1 (003).	
		entral equilibrium (1995)	
) Chatab a graph to about how a	antuinatal famaa vanuusith		
) Sketch a graph to show how co	entripetal force vary with		
the square of angular velocity			(1 mark
			90 90
8.0			
			2
			× 5. 0
) radius of the circle			(1 mark
) radius of the circle			(1 mark
) radius of the circle			(1 marl
) radius of the circle			(1 marl
i) radius of the circle			(1 marl
) radius of the circle			(1 marl
i) radius of the circle			(1 marl
i) radius of the circle ii) the square of linear velocity			(1 mark

17. a) The figure below represents an hydraulic broke system.

A force of 20N is applied on the foot pedal connected to a piston of area 0.005m2 and this causes a stopping force 5000N.

Determine : 9

. /	117520-1-75179-1000	CAT		
1)	area	otthe	Slave	piston
1		200	Dict ! C	Piston

(2 marks)

For More Free Acti ii) efficiency of the system

(3 marks)

b) i) Define specific latent heat of vaporisation.

(1 mark)

ii) In an experiment to determine the specific latent heat of water, steam at 100°C was passed into water contained in a well lagged copper calorimeter. The following measurements were made:

Mass of calorimeter = 50g Initial mass of water = 70g

Initial room temperature of water = 15° C

Final temperature of mixture = 45° C

Final mass of water + colorimeter + condensed steam = 150g

Specific heat capacite of water = 4200Jkg⁻¹k⁻¹

Specific heat capacity of copper = 390Jkg⁻¹k⁻¹

Determine the specific latent heat of vaporisation of steam, L_v rote where L_v rote L_v rot

(6 marks)

Westlands - Form 4 2014