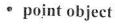
| *     | Name                           | * Eteekcseps                                                                                                  |         |                 | Index N | No  |             |
|-------|--------------------------------|---------------------------------------------------------------------------------------------------------------|---------|-----------------|---------|-----|-------------|
|       | 232/2                          | a de la companya de | Ca      | andidate's Sigr | nature  |     |             |
|       | PHYSICS                        | Tope,                                                                                                         |         |                 |         |     |             |
|       | Paper 2                        | °. 2° 6°,                                                                                                     |         | Date            |         |     |             |
|       | July/August 2014 Time: 2 Hours | Jrd. T                                                                                                        |         |                 |         |     |             |
|       | inite. 2 Hours                 | · ×                                                                                                           |         |                 |         |     |             |
|       |                                | 1757                                                                                                          |         |                 |         |     |             |
|       | 40                             |                                                                                                               |         |                 |         |     |             |
|       | Dage.                          |                                                                                                               |         |                 |         |     | 39 <b>2</b> |
|       | July/August 2014 Time: 2 Hours |                                                                                                               |         |                 |         |     |             |
|       | <b>₹</b> \$                    |                                                                                                               |         |                 |         | 14  |             |
|       | ACS,                           |                                                                                                               |         |                 |         |     |             |
| Ý     | WESTLA                         | NDS FORN                                                                                                      |         |                 |         | TIO | N           |
| \$000 |                                |                                                                                                               |         |                 |         |     |             |
|       |                                | V DECEMBER                                                                                                    | PHYSICS |                 |         |     |             |

## PHYSICS

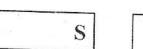
Paper 2 July/August 2014 Time: 2 Hours

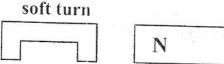

## INSTRUCTIONS TO CANDIDATES

- Write your name and index number and date in the spaces provided above.
- This paper consists of two sections; A and B
- \* Answer all the questions in section A and B in the spaces provided.
- All working **must** be clearly shown.
- Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

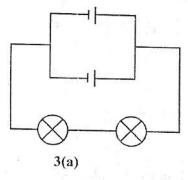
## For Examiner's Use Only

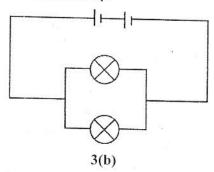
| Section | Question | Maximum score | Candidate's score |
|---------|----------|---------------|-------------------|
| Α       | 1 - 13   | 25            |                   |
|         | . 14     | 9             | 4 4 = 1           |
|         | 15       | 9             |                   |
| В       | 16       | 13            |                   |
|         | 17       | 13            |                   |
|         | 18       | 11            |                   |
| Т       | otal     | 80            |                   |


The figure 1 below shows a point object in front of plane mirror. Using the appropriate rays, locate (2 marks)

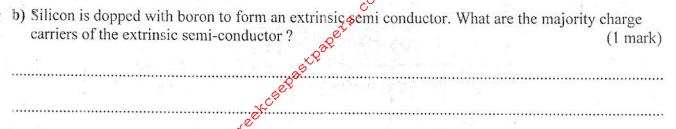



plane mirror

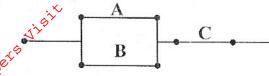

Sketch the magnetic field pattern in the diagram of figure 2 below.


(2 marks)






3. A Form 1 student was investigating the brightness of bulbs when set up circuits. He used identical bulbs and cells. The circuits figure 3(a) and (b) were what he set up.






State and explain which set up had the bulbs brightest. (2 marks) 4. a) State two factors that increases the electrical conductivity of a semi-conductor. (2 marks) i) ..... ii) ......

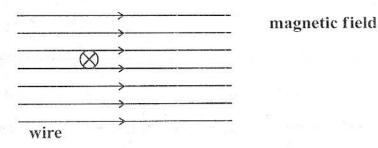


5. In figure 4 below A, B and C are identical wires of equal length and of  $27\Omega$  resistances arranged as shown.



Determine their combined resistance.

(2 marks)


6. The figure below shows a ray of light through a transparent material placed in air.



Calculate the refractive index of the transparent material.

(2 marks)

7. The figure 5 below shows a wire in a magnetic field. A current is switched on to flow in the wire in the direction indicated.

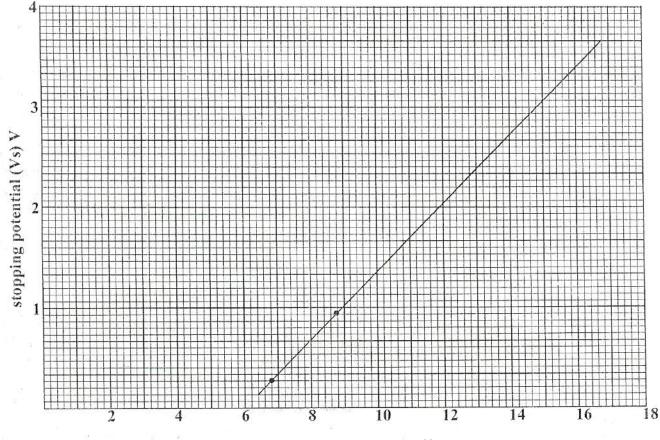


Show the direction of motion of the wire.

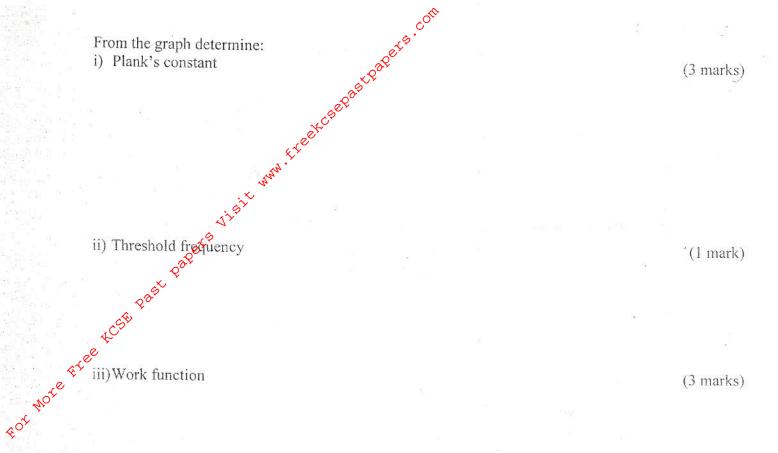
(1 mark)

|                  | ai = 3,                                                  | A               | В        | C              | D                 | For F                                   | G                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|------------------|----------------------------------------------------------|-----------------|----------|----------------|-------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|--------------------------|
|                  | 2.5                                                      | L               | ino      | roos:          |                   | 2000                                    |                                         | Manual Control of the |                              |                             | •                        |
|                  |                                                          |                 |          |                | X.                | avelengtl                               | n, Λ                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|                  | Indicate the reg                                         | ion fo          | r the    | follog         | ing.              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             | (2 marks)                |
|                  | ii) Infrared radia                                       | ations          | is .     | Ne series      |                   |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
| 9.               | a) What is the p                                         | ourpos          | e of t   | he tin         | ne-bas            | e in a catho                            | ode rav o                               | oscillosc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | one ?                        |                             | (1 mark)                 |
|                  |                                                          | 250             |          |                |                   |                                         |                                         | 1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | орс.                         |                             | (Tillatk)                |
|                  | × 697                                                    | •••••           | •••••    | •••••          |                   | ••••••••••••••••••••••••••••••••••••••• | • • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|                  | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ |                 | •••••    | •••••          |                   | ••••••                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|                  | b) Ketch the tra                                         | ace se          | en on    | the so         | creen (           | of a C.R.O                              | when th                                 | ne time b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ase is switc                 | hed off and                 |                          |
| &.               | j) a d.c voltage                                         | арри            | ed acr   | oss th         | ie y-pl           | ates                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             | (2 marks)                |
| - Ş <sup>^</sup> |                                                          |                 |          |                |                   |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|                  |                                                          |                 |          |                |                   |                                         | creen                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 78                          |                          |
|                  |                                                          |                 |          |                |                   |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|                  | ii) an a.c. voltag                                       | ge is a         | pplied   | l to th        | e y-pl            | ates                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|                  |                                                          |                 | Γ        |                |                   |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . *                          |                             |                          |
|                  |                                                          |                 |          |                |                   | ←- s                                    | creen                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
| 10               | Figure 7 below                                           | ehowe           | a die    | nlace          | mont t            | imo granh                               | of a view                               | D.t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 6.1                         | 1                        |
|                  | Figure 7 below:                                          | 3110 773        | a dis    | pracer         | ment t            | inie grapii                             | or a way                                | ve. Deter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mine the ire                 | equency of the              | ne wave. (2 marks)       |
|                  |                                                          | ınt             | 1        |                |                   |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                            |                             |                          |
|                  |                                                          | displacement    |          | 1              |                   |                                         | $\triangle$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V /                          |                             |                          |
|                  |                                                          | olac            |          | /              |                   |                                         | /                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 10 0<br>12 12               |                          |
|                  |                                                          | dis             | <b>K</b> |                |                   | -0.025s                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | →¹ time                      |                             |                          |
| 11               | When a highly                                            |                 | 1        | .1             | f                 | 3 . 1                                   | l. C                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                            |                             | 50 Va. W                 |
| 11.              | When a highly observed that th                           | posii<br>e leaf | diver    | cnarg<br>gence | ged ro<br>first ( | d is brough                             | ght from                                | n high j<br>rises as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oosition tov<br>the rod near | vards electrons the cap. Ex | oscope, it is<br>xplain. |
|                  |                                                          |                 |          |                |                   |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 1 5                         | (2 marks)                |
|                  |                                                          |                 |          |                |                   |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|                  |                                                          |                 |          |                |                   |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | =                           |                          |
|                  |                                                          | 1               |          |                |                   |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|                  |                                                          |                 |          |                |                   |                                         | ••••••                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                          |
|                  |                                                          |                 |          | · · · · hia    | h mal             | ec it noccil                            | ala to do                               | test orac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | leg in hono                  |                             | (1 mark)                 |
| 12               | State the proper                                         | ty of           | x-rays   | wille          | II IIIan          | es it possit                            | ore to de                               | icci crac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ks in bone.                  |                             | (1 1114111)              |

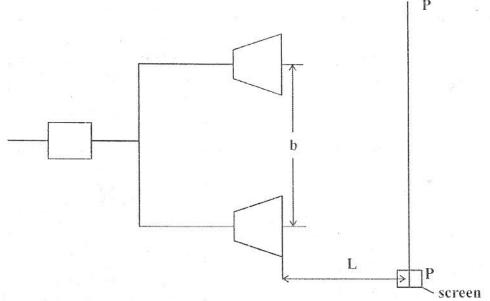
13. Draw a circuit diagram showing a junction diode in a reverse bias connection to a D.C cell. (1 mark)


SECTION B: (55 Marks) Attempt all questions

14. a) Define:


| i) Work function | (1 mark)                                |
|------------------|-----------------------------------------|
| .e <sup>©</sup>  |                                         |
| <b>♦</b>         |                                         |
| <sup>/</sup>     | *************************************** |

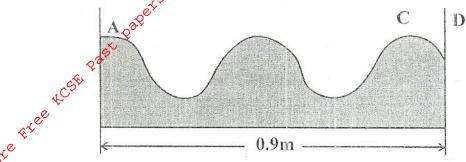
ii) threshold wavelength (1 mark)


b) The graph below shows variation of stopping potential and frequency during photoelectric effect experiment.



frequency  $f \times 10^{14}$ Hz

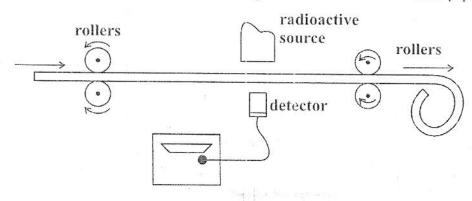



15. a) The figure shows two speakers connected to an audio-frequency generator, placed in a table in a disco hall. The two speakers are separated by a distance b apart and perpendicular line PQ is L distance from the speakers.



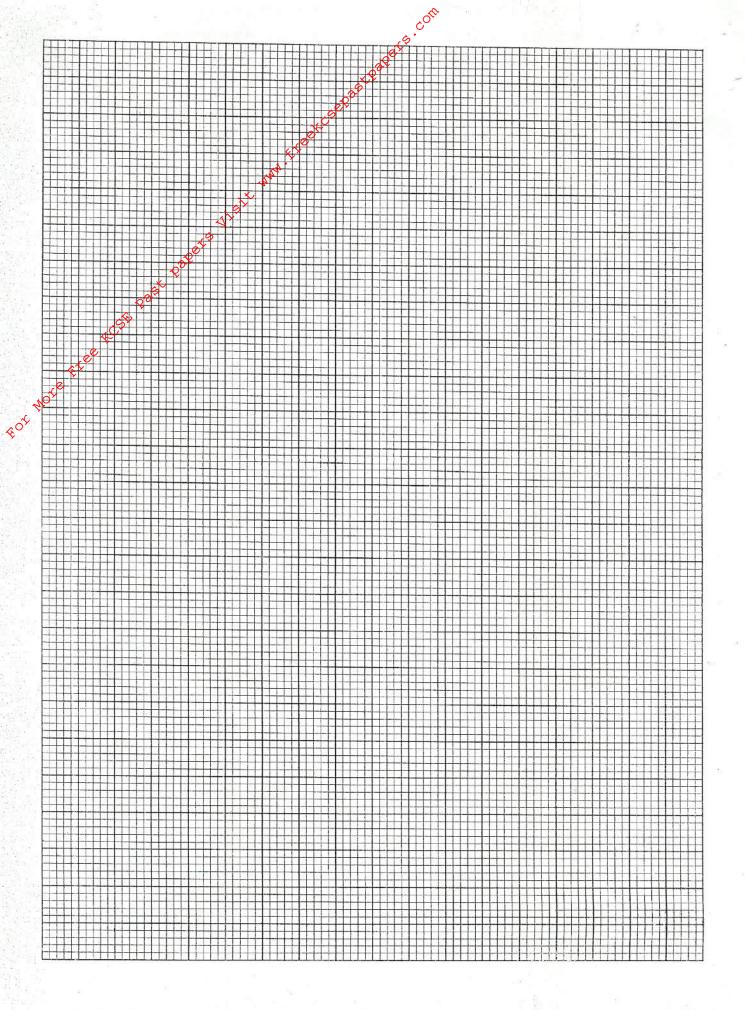
Briefly state observations made by an observer:

i) Moving along PQ when generator is on

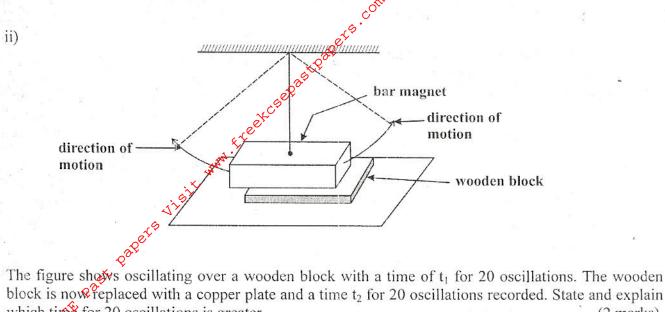

(1 mark)



What is the wavelength of the wave? (2 marks)


| ii) If the crest at A takes 1.5 seconds to reach C, what is the frequency of the | wave ? | (2 marks) |
|----------------------------------------------------------------------------------|--------|-----------|
|                                                                                  |        |           |
|                                                                                  |        |           |
| iii)State giving the reason, whether the waves are longitudinal or transverse.   |        | (2 marks) |
|                                                                                  |        |           |

16. In factory which makes baking foil changes in the thickness of the foil are detected using a radioactive source and a detector shown in the figure below. The source emits  $\beta$ -particles.




| a) Explain how ch    | nange in the thickness of the foil                                                                     | covering are detected.                        | (2 m            |
|----------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------|
| side ext             |                                                                                                        |                                               |                 |
| - <del>V.</del>      | ste X                                                                                                  | covering are detected.                        |                 |
| b) Explain why no    | either alpha or gamma sources w                                                                        | yould not be suitable for this appl           | lication. (2 m  |
| QaQe <sup>2</sup>    | =                                                                                                      |                                               | . ·             |
| c) An isotope of the | 65550                                                                                                  | emission of alpha radiations to g             | ive an isotope  |
| i) Name the parti    | icles which make up the nucleus                                                                        | of $\frac{235}{92}$ U stating clearly how man | ny there are of |
| - * *,               | ·····                                                                                                  |                                               |                 |
| * 10.7               |                                                                                                        |                                               |                 |
|                      | $\xrightarrow{a}$ $\xrightarrow{234}$ Th $\xrightarrow{b}$ $\xrightarrow{234}$ $\xrightarrow{92}$ U $$ | ACCAMA!                                       |                 |
| i) Write down th     | ne particles emitted in each decar                                                                     | <b>y.</b>                                     |                 |
| a                    | # 5   E                                                                                                | 1                                             |                 |
| b                    |                                                                                                        |                                               |                 |
| E.                   |                                                                                                        |                                               |                 |
|                      | sotopes in the decay series above                                                                      |                                               | (1              |
|                      |                                                                                                        |                                               |                 |
| e) i) The isotop     |                                                                                                        | s a half life of 25 hours. What is            |                 |
|                      | 2<br>                                                                                                  |                                               |                 |
|                      |                                                                                                        |                                               |                 |

|                                                                        |                         |                                           |                         | os                        | , <del>v</del><br>······ |              |              |              |                       |
|------------------------------------------------------------------------|-------------------------|-------------------------------------------|-------------------------|---------------------------|--------------------------|--------------|--------------|--------------|-----------------------|
|                                                                        |                         |                                           |                         | cand pra                  |                          |              |              |              |                       |
| KCW (SE                                                                |                         | •••••                                     | 8.706                   |                           | 250 =                    | _            |              |              |                       |
|                                                                        |                         | ×,                                        | No.                     |                           |                          |              |              |              |                       |
|                                                                        |                         | J'>5'                                     | +                       |                           |                          |              |              | 5 7 5 5 1 1  |                       |
| a) Draw a ray o                                                        | diagra                  | n showi                                   | ng how a                | a conver                  | ging lens                | may be       | used as a    | simple mic   | croscope.<br>(3 marks |
| W                                                                      | Sar.                    |                                           |                         |                           |                          |              |              |              | (5 marks              |
| 2 dags                                                                 |                         |                                           |                         |                           |                          |              |              |              |                       |
| 4CSW                                                                   |                         |                                           |                         |                           |                          |              |              |              |                       |
|                                                                        |                         |                                           |                         |                           |                          |              |              |              |                       |
| 44ee                                                                   |                         |                                           |                         |                           |                          |              |              |              |                       |
| \$tee                                                                  |                         |                                           |                         |                           |                          |              |              |              |                       |
| ¢ree                                                                   |                         |                                           |                         |                           |                          |              | #0<br>#2     |              |                       |
| a) Draw a ray (  \$\frac{1}{2} \text{cst}  \text{act}  b) In an experi |                         | o detern                                  | nine the                | focal len                 | oth of a                 | convex l     | ens. a stu   | ident obtain | ed the results as     |
|                                                                        | ment t                  |                                           | nine the                | focal len                 | gth of a                 | convex l     | ens, a stu   | ıdent obtain | ned the results as    |
| b) In an experi<br>shown in th                                         | ment te table           | below.                                    |                         |                           |                          | *            |              | ident obtain | ied the results as    |
| b) In an experi<br>shown in th                                         | ment te table           |                                           | 16.0<br>27.0            | focal len<br>18.0<br>22.5 | gth of a                 | 30.0<br>15.0 | 40.0<br>13.0 | ıdent obtain | ned the results as    |
| b) In an experi<br>shown in the                                        | ment te table           | te below.                                 | 16.0                    | 18.0                      | 24.0                     | 30.0         | 40.0         | ident obtain | ed the results as     |
| b) In an experi<br>shown in th                                         | ment te table (cm) (cm) | 12.5<br>50.0<br>(y-axis)                  | 16.0<br>27.0<br>against | 18.0<br>22.5<br>U (x-axis | 24.0                     | 30.0         | 40.0         | ident obtain | ed the results as     |
| b) In an experishown in the U (V (                                     | (cm) (cm) n of V        | te below.  12.5  50.0  (y-axis)  wided or | 16.0<br>27.0<br>against | 18.0<br>22.5<br>U (x-axis | 24.0<br>17.0<br>s).      | 30.0         | 40.0         |              |                       |



| A generator produces 150KW at a voltage of 5KV. The voltage is stepped up to 60KV and transmitted through cables of resistance 150W to a step-down transformer in a substation. I transformers are 80% efficient, calculate:  ourrent through the transmission cables  (2                                                                                                                                               | 2 marks                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| A generator produces 150KW at a voltage of 5KV. The voltage is stepped up to 60KV and transmitted through cables of resistance 150W to a step-down transformer in a substation. I transformers are 80% efficient, calculate:  Surrent through the transmission cables  (2)  The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                       | marke                   |
| A generator produces 150KW at a voltage of 5KV. The voltage is stepped up to 60KV and transmitted through cables of resistance 150W to a step-down transformer in a substation. I transformers are 80% efficient, calculate:  Surrent through the transmission cables  (2)  The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                       | marke                   |
| A generator produces 150KW at a voltage of 5KV. The voltage is stepped up to 60KV and transmitted through cables of resistance 150W to a step-down transformer in a substation. I transformers are 80% efficient, calculate:  Surrent through the transmission cables  (2)  The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                       | marke                   |
| A generator produces 150KW at a voltage of 5KV. The voltage is stepped up to 60KV and transmitted through cables of resistance 150W to a step-down transformer in a substation. I transformers are 80% efficient, calculate:  ourrent through the transmission cables (2  power lost during transmission (2)  The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.     | . marks                 |
| A generator produces 150KW at a voltage of 5KV. The voltage is stepped up to 60KV and transmitted through cables of resistance 150W to a step-down transformer in a substation. It transformers are 80% efficient, calculate:  ourrent through the transmission cables  (2)  power lost during transmission  (2)  The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer. |                         |
| A generator produces 150KW at a voltage of 5KV. The voltage is stepped up to 60KV and transmitted through cables of resistance 150W to a step-down transformer in a substation. It transformers are 80% efficient, calculate:  ourrent through the transmission cables  (2)  power lost during transmission  (2)  The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer. |                         |
| transmitted through cables of resistance 150W to a step-down transformer in a substation. I transformers are 80% efficient, calculate:  ourrent through the transmission cables  (2)  power lost during transmission  (2)  The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                                                                        | •••••                   |
| The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                                                                                                                                                                                                                                                                                                   | I<br>If both<br>2 marks |
| The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                                                                                                                                                                                                                                                                                                   |                         |
| The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                                                                                                                                                                                                                                                                                                   |                         |
| The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                                                                                                                                                                                                                                                                                                   |                         |
| The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                                                                                                                                                                                                                                                                                                   |                         |
| The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                                                                                                                                                                                                                                                                                                   |                         |
| The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                                                                                                                                                                                                                                                                                                   |                         |
| The figure below shows a conductor AB passing through a magnetic field and connected to galvanometer.                                                                                                                                                                                                                                                                                                                   |                         |
| galvanometer.                                                                                                                                                                                                                                                                                                                                                                                                           | 2 marks                 |
| galvanometer.                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| B                                                                                                                                                                                                                                                                                                                                                                                                                       | оа                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| e conductor moves slightly due effects of electromagnetic damping. Explain how the rent causes the electromagnetic damping.                                                                                                                                                                                                                                                                                             | induce<br>1 mark        |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |



block is now replaced with a copper plate and a time t2 for 20 oscillations recorded. State and explain which time for 20 oscillations is greater. (2 marks)

| · · · · · · · · · · · · · · · · · · · | 2                                    | a.                         |          |
|---------------------------------------|--------------------------------------|----------------------------|----------|
| 2<br>2                                |                                      |                            |          |
|                                       |                                      | ×                          |          |
| <u> </u>                              | 2 2 2                                |                            | *        |
| iii)Explain ho                        | w lamination of cores minimises ener | rgy losses in transformer. | (1 mark) |
|                                       |                                      |                            |          |
| (                                     |                                      |                            |          |
|                                       |                                      |                            |          |