NAME:	ME: for free papers visit www.freekcsepastpapers.com				
	CANDIDATE'S SIGNATURE				
233/2 CHEMISTRY Paper 2 March/April, 2016	DATE:				

MOKASA JOINT EVALUATION EXAM

K. C. S. E. (Kenya Certificate of Secondary Education)

233/2 CHEMISTRY Paper 2 Time: 2 Hours

INSTRUCTIONS TO CANDIDATES

Time: 2 Hours

- Write your name and index number in the spaces provided.
- Answer all questions in the spaces provided
- Mathematical tables and silent electronic calculators may be used for calculations.
- All workings **must** be clearly shown where necessary.
- Candidates should check the question paper to ascertain all the pages are printed as indicated and no questions are missing.

For Examiners Use Only

Questions	Maximum Score	Score
1		
2		
3		
4		
5		
6		
7		
8		
TOTAL	80	

S U	
P R T W	
Q	
a) Which of the above elements has the largest atomic radius? Explain?	
	••••
b) Identify the most reactive non-metal. Explain	(1 m
	•
c) Write the electron configuration of ions of;	
(i) Element S	(½ n
	•••••
(ii) Element Q	(½ n
d) Compare the etemie redive of D and D	
d) Compare the atomic radius of P and R	(1 m
e) Write the formula of one stable cation with an electron arrangement of 2:8	(1 m
f) Given that the atomic mass of W is 40 write down the composition of its nuc	cleus
, The state of the	(1 m
g) Write the formula of the compound formed when P and S react	(1 m

	h) Give the family to which element R belong	(1 mark)
	i) Element X forms an ion with the fomula X ³⁻ with electron configuration of 2.8. grid above, show the position of element X	On the (1 mark)
	j) Compare the electrical conductivity of the compound formed between P and U element Q	and (2 marks)
•	Study the flow chart below and answer the questions that follow.	•••••
	Step(viii) Cl ₂ and UV light Step I CH ₃ CH=CH Step III CH ₃ CH ₃ CH=CH Step III CH ₃ CH=CH Step III	
te	Propanoic acid CH ₃ CH ₂ CH ₂ OH tassium metal X + Gas M Step VII	

Step VI

Conc.

+ heat

 $H_2SO_4 + Ethanol$

a)i)	Name the type of reaction in the following steps Step I	(1 mark)
	Step IV	(1 mark)
ii) Reag	Name the important reagents and conditions in; Step I: ent	(½ mark)
Cond	ition	
Reag	Step V: ent	(½ mark) (½ mark)

(½ mark)

Condition

Step IV

Sugars

	Name and draw the structure of compound L					
c)	Write an equation for the reaction in S	1	(1 n			
••••						
d) 	State the homologous series to which	the compound C ₃ H ₈ belongs	•			
e) 	State one industrial application of the	•	(1 r			
 f)	Explain how one can distinguish betw	veen the compounds C2H2 and C2H				
1)	chemical test	veen the compounds C3113 and C31	(2 r			
	following information show standard ele	ectrode potentials for some half re	• • • • • • • • • •			
	following information show standard elements of the questions that follow.	E ^e /Volts	• • • • • • • • • •			
	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$	E ^o /Volts +1.61	• • • • • • • • • •			
	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$ $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$	E°/Volts +1.61 +0.77	• • • • • • • • •			
	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$ $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$ $I_{2(aq)} + 2e^{-} \longrightarrow 2I^{-}_{(aq)}$	E ^o /Volts +1.61 +0.77 +0.54	• • • • • • • • •			
	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$ $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$ $I_{2(aq)} + 2e^{-} \longrightarrow 2I^{-}_{(aq)}$ $Fe^{2}_{+(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$	E°/Volts +1.61 +0.77 +0.54 -0.44	• • • • • • • • • •			
	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$ $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$ $I_{2(aq)} + 2e^{-} \longrightarrow ZI_{(aq)}$ $Fe^{2}_{+(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$ $Zn^{2+}_{(aq)} + 2e^{-} \longrightarrow Zn_{(s)}$	E°/Volts +1.61 +0.77 +0.54 -0.44	• • • • • • • • •			
to ar	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$ $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$ $I_{2(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$ $Fe^{2}_{+(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$ $Zn^{2+}_{(aq)} + 2e^{-} \longrightarrow Zn_{(s)}$ $J^{3+}_{(aq)} + 3e^{-} \longrightarrow J_{(s)}$ Identify the strongest reducing agent	E°/Volts +1.61 +0.77 +0.54 -0.44 -0.76	actions.			
to ar	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$ $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$ $I_{2(aq)} + 2e^{-} \longrightarrow I_{2(aq)}$ $Fe^{2}_{+(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$ $Zn^{2+}_{(aq)} + 2e^{-} \longrightarrow Zn_{(s)}$ $J^{3+}_{(aq)} + 3e^{-} \longrightarrow J_{(s)}$ $Identify the strongest reducing agent$	E°/Volts +1.61 +0.77 +0.54 -0.44 -0.76	actions.			
a) I b) V	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$ $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$ $I_{2(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$ $Zn^{2+}_{(aq)} + 2e^{-} \longrightarrow Zn_{(s)}$ $J^{3+}_{(aq)} + 3e^{-} \longrightarrow J_{(s)}$ $Identify the strongest reducing agent$ Which substance in the table is suitable to	E°/Volts +1.61 +0.77 +0.54 -0.44 -0.76 X	(1 r			
a) I b) V	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$ $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$ $I_{2(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$ $Zn^{2+}_{(aq)} + 2e^{-} \longrightarrow Zn_{(s)}$ $J^{3+}_{(aq)} + 3e^{-} \longrightarrow J_{(s)}$ Identify the strongest reducing agent	E°/Volts +1.61 +0.77 +0.54 -0.44 -0.76 X	(1 r			
a) I b) V	nswer the questions that follow. $Ce^{4+}_{(aq)} + e^{-} \longrightarrow Ce^{3+}_{(aq)}$ $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$ $I_{2(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$ $Zn^{2+}_{(aq)} + 2e^{-} \longrightarrow Zn_{(s)}$ $J^{3+}_{(aq)} + 3e^{-} \longrightarrow J_{(s)}$ $Identify the strongest reducing agent$ Which substance in the table is suitable to	E°/Volts +1.61 +0.77 +0.54 -0.44 -0.76 X	(1 r (1 r			

(i)	Identify the anode and the cathode Anode:	(1 mark)
	Cathode:	(1 mark)
(ii) 	If the two half cells in c(i) above are connected externally, write an equation place in zinc half cell	(1 mark)
 iii) 	Calculate the e.m.f. of the cell	(1 mark)
iv) 	State the role of KNO ₃	(1 mark)
v)	Explain what happens when $KCl_{(aq)}$ is used instead of KNO_3 in a case wher $Pb_{(s)}/Pb^{2+}_{(aq)}$ is one of the half cells	e (2 marks)
vi)	Draw an electrochemical cell to represent the cell in c(ii) above	(2 marks)
vii)	If the e.m.f. of the cell $J_{(s)}/J^{3+}_{(aq)}//I_{2(s)}/2I^{-}_{(aq)}$ is $+1.32V$, calculate the value of	$\int J^{3+}_{(aq)}/J_{(s)}$ (1 mark)

4. The flow diagram shows the extractions of lead and zinc metals. Study it and answer the questions that follow.


```		Molten lead	
a)i)	Name the chief ores used in the extraction of; Zinc	(½ mark)	
•••••	Lead	(½ mark)	
ii)	Identify substances K and Q		
Q		(½ mark)	
,	State the function of coke in chamber N	(1 mark)	
iv)	Write a chemical equation for the reaction between gas Q and calcius solution	m hydroxide (1 mark)	
v)	What property makes it possible to separate the two metals	(1 mark)	
vi)	Explain why zinc is preferred for coating iron to copper	(1 mark)	
 vii)	State two effects that this process would have on the environment	(2 marks)	

	for free papers visit www.freekcsepastpapers.com	
viii)	Give one use of zinc	(1 mark)
b) (i)	The process of obtaining pure zinc is by electrolytic method.  Name the electrolyte used in the electrolytic method	(1 mark)
••••		
(ii)	Describe an experiment carried out to determine the presence of zinc metal sample of soil using dilute sulphuric (vi) acid and aqueous ammonia	

5. The flow chart below show the large scale manufacture of ammonia by haber process. Study it and answer the questions that follow.



a) Id	entify gas R for free papers visit www.freekcsepastpapers.com	(1 ma
b) i)	Name two sources of hydrogen gas used in the process	(2 m
ii)	Explain the reason why the mixture of hydrogen gas and gas R are passed thro	ough the p
iii) 	Name a suitable catalyst used in the catalystic chamber	(1 ma
c)i)	Identify chamber P	(½ m
ii)	Explain why mixture of hot gases is passed through chamber P	(1 m
iii)	Write an equation for the main reaction in the catalytic chamber	(1 ma
d)	Explain using equations the following observation Hot platinum wire glows on coming into contact with fumes of Ammonia	(2 m
e)	State two industrial uses of ammonia	(1 ma
a)	Define the term molar heat of formation	(1 ma
	The the following standard autholaice of combustion to approach a greation of	
b)	Use the following standard enthalpies of combustion to answer the questions t $\Delta H^{\rm e}_{\rm c}$ (carbon) = -393kJmol ⁻¹ $\Delta H^{\rm e}_{\rm c}(H_{2g})$ = -286kJmol ⁻¹ $\Delta H_{\rm c}(C_4H_{10})$ = -1290kJmol ⁻¹	nat follov

(i)	·	apers visit www.freekcsepastpapers.com the formation of butane	(1 mark)
(ii)	Draw an energy level	diagram that links heat of formation of butaneeats of combustion of carbon and hydrogen	
(iii)	Calculate the standard	I heat of formation of butane	(2 marks)
c) D	etermine the heating va	lue of butane	(1 mark)
		low to calculate the enthalpy change for the fo	
H C	ond -Cl l-Cl -H	Bond energy in kJmol ⁻¹ 431 242 413	

(3 marks)

7. I. The solution in grams of sodium nitrate in 100g of water is given for various temperature in degree celcius

Temperature	0	10	20	30	40	50	60	80	90	100
Solubility	73	80	88	96	104	114	124	148	162	180

a) Draw a graph of solubility of sodium nitrate against temperature

(3 marks)



b)	From the graph determine the solubility of sodium nitrate at 70°C	(1 mark)
c)	100 grams of a saturated solution of sodium nitrate at was cooled from 80°C to 10°C mass will crystallize out	(2 marks)
•••		•••••

## II Study the flow chart below and answer the questions that follow.



(1)	Write the chemical formula of; a) Solid P	(1 mark)
	b) The white precipitate	(1 mark)
III	Starting with copper(II) carbonate, describe how a solid sample of copper (II) sucrystals would be prepared	